首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
亲和色谱中配基的筛选与应用   总被引:1,自引:0,他引:1  
赵睿  刘国诠 《色谱》2007,25(2):135-141
亲和配基的选择与筛选是发展新的亲和色谱填料或构建一个新的亲和色谱体系所必须解决的首要问题。该文结合作者所在实验室的工作,对配基的选择、筛选与应用方面的一些进展进行了简要评述。作者所在实验室针对特定蛋白质和多肽的多肽亲和配基的筛选,开展了反义肽简并性的研究,发展了基于反义肽的组合化学筛选新方法。与常规的组合合成法相比,该方法简单、快捷、有效,极大地减小了合成和筛选的工作量,降低了筛选后亲和组分结构鉴定的难度。所建立的筛选策略已应用于流感病毒、严重急性呼吸道综合征(SARS)病毒亲和抑制剂的筛选和用于人β-干扰素测定的石英晶体微天平(QCM)生物传感器的构建,均取得了有意义的结果。  相似文献   

2.
Affinity adsorbents for trypsin which were prepared by immobilizing product-type ligands, that is, peptides having C-terminal arginine, proved to be effective not only for preparative purposes but also for basic research on molecular recognition. The properties of the binding site of trypsin were revealed by chromatographic experiments. Quantitative analysis based on the theory of frontal affinity chromatography proved to be extremely effective. As an extension of the product-type ligands, peptide argininals were also used and information on the mechanism of action of these inhibitors was obtained. Anhydrotrypsin, which lost the hydroxyl group of Ser183, was found to gain increased binding ability for product-type compounds. This inactivated enzyme was also used as an immobilized ligand and the unique affinity adsorbent thus prepared proved to be extremely effective for the separation of peptides and recombinant proteins based on their C-terminal structures. High-performance affinity chromatography of trypsin and related enzymes using a polymer-based support was also developed.  相似文献   

3.
The combined use of monolithic supports with selective affinity ligands as stationary phases has recently given rise to a new method known as affinity monolith chromatography (AMC). This review will discuss the basic principles behind AMC and examine the types of supports and ligands that have been employed in this method. Approaches for placing affinity ligands in monoliths will be considered, including methods based on covalent immobilization, biospecific adsorption, entrapment, and the formation of coordination complexes. Several reported applications will then be presented, such as the use of AMC for bioaffinity chromatography, immunoaffinity chromatography, immobilized metal-ion affinity chromatography, dye-ligand affinity chromatography, and biomimetic chromatography. Other applications that will be discussed are chiral separations and studies of biological interactions based on AMC.  相似文献   

4.
The recombinantly produced different forms of protein G, namely monofunctional immunoglobulin G (IgG) binding, monofunctional serum albumin (SA) binding and bifunctional IgG/SA binding proteins G, are compared with respect to their specific affinities to blood IgG and SA. The affinity mode of the recently developed high-performance monolithic disk chromatography has been used for fast quantitative investigations. Using single affinity disks as well as two discs stacked into one separation unit, one order of magnitude in adsorption capacities for IgG and SA were found both for monofunctional and bifunctional protein G forms used as specific affinity ligands. However, despite the adsorption difference observed, the measured dissociation constants of the affinity complexes seemed to be very close. The analytical procedure developed can be realized within a couple of minutes. Up-scaling of the developed technology was carried out using another type of monolithic materials, i.e. CIM affinity tubes.  相似文献   

5.
Aptamers: molecular tools for analytical applications   总被引:3,自引:0,他引:3  
Aptamers are artificial nucleic acid ligands, specifically generated against certain targets, such as amino acids, drugs, proteins or other molecules. In nature they exist as a nucleic acid based genetic regulatory element called a riboswitch. For generation of artificial ligands, they are isolated from combinatorial libraries of synthetic nucleic acid by exponential enrichment, via an in vitro iterative process of adsorption, recovery and reamplification known as systematic evolution of ligands by exponential enrichment (SELEX). Thanks to their unique characteristics and chemical structure, aptamers offer themselves as ideal candidates for use in analytical devices and techniques. Recent progress in the aptamer selection and incorporation of aptamers into molecular beacon structures will ensure the application of aptamers for functional and quantitative proteomics and high-throughput screening for drug discovery, as well as in various analytical applications. The properties of aptamers as well as recent developments in improved, time-efficient methods for their selection and stabilization are outlined. The use of these powerful molecular tools for analysis and the advantages they offer over existing affinity biocomponents are discussed. Finally the evolving use of aptamers in specific analytical applications such as chromatography, ELISA-type assays, biosensors and affinity PCR as well as current avenues of research and future perspectives conclude this review.  相似文献   

6.
A new method to find novel protein targets for ligands of interest is proposed. The principle of this approach is based on affinity chromatography and combinatorial chemistry. The proteins within a crude rat liver homogenate were allowed to interact with a combinatorial library of phosphinic pseudopeptides immobilized on affinity columns. Betaine: homocysteine S-methyltransferase (BHMT) was one of the proteins that was retained and subsequently eluted from these supports. The phosphinic pseudopeptides, which served as immobilized ligands for the isolation of rat BHMT, were then tested for their ability to inhibit human recombinant BHMT in solution. The most potent inhibitor also behaved as a selective ligand for the affinity purification of BHMT from a complex media. Further optimization uncovered Val-Phe-psi[PO(2-)-CH(2)]-Leu-His-NH(2) as a potent BHMT inhibitor that has an IC(50) of about 1 microM.  相似文献   

7.
Summary Affinity columns suitable for HPLC were prepared by immobilization of various ligands of protein A, human IgG, human IgM and pectinase on GMA modified cellulose membrane. The adsorption capacity, affinity efficiency and activity recovery of various IgGs on these affinity columns were measured. It was observed that the length of the coupling arm plays a very important role in affinity efficiency, and the effect of eluent flow-rate on adsorption capacity was very small. The protein A column was exploited for the process monitoring of dog IgG in clinical experiments on immuno-adsorption therapy. A pectinase column was used for the determination of polygalacturonase inhibiting proteins first purified on a hydroxyapatite column. It took only about 2.5 min for analysis at a flow-rate of 1.0 mL min−1. The high speed analysis of biopolymers could be performed at a flow rate of 6.0 mL min−1 within 15 s. Membrane affinity chromatography gives good reproducibility, high efficiency, low column-pressure and is rapid. It can also be used for micro-scale purification of biopolymers.  相似文献   

8.
A poly-His tag was fused in the glutaryl acylase (GA) from Acinetobacter sp. strain YS114 cloned in E. coli yielding a fully active enzyme. Biochemical analyses showed that the tag did not alter the maturation of the chimeric GA (poly-His GA) that undergoes a complex post-translational processing from an inactive monomeric precursor to the active heterodimeric enzyme. This enzyme has been used as a model to develop a novel and very simple procedure for one-step purification of poly-His proteins via immobilized metal-ion affinity chromatography on tailor-made supports. It was intended to improve the selectivity of adsorption of the target protein on tailor-made chelate supports instead of performing a selective desorption. The rate and extent of the adsorption of proteins from a crude extract from E. coli and of pure poly-His tagged GA on different metal chelate supports was studied. Up to 90% of proteins from E. coli were adsorbed on commercial chelate supports having a high density of ligands attached to the support through long spacer arms, while this adsorption becomes almost negligible when using low ligand densities, short spacer arms and Zn2+ or Co2+ as cations. On the contrary, poly-His GA adsorbs strongly enough on all supports. A strong affinity interaction between the poly-His tail and a single chelate moiety seems to be the responsible for the adsorption of poly-His GA. By contrast, multipoint weak interactions involving a number of chelate moieties seem to be mainly responsible for adsorption of natural proteins. By using tailor-made affinity supports, a very simple procedure for one-step purification of GA with minimal adsorption of host proteins could be performed. Up to 20 mg of GA were adsorbed on each ml of chelate support while most of accompanying proteins were hardly adsorbed on such supports. Following few washing steps, the target enzyme was finally recovered (80% yield) by elution with 50 mM imidazole with a very high increment of specific activity (up to a 120 purification factor).  相似文献   

9.
Summary

Affinity chromatography is one of the most powerful techniques for the purification of biologically active proteins available (for review see [1]). The ability of this method to purify proteins is based on highly specific, selective or characteristic interactions with immobilized ligands. Several advantages over traditional soft gel affinity supports have been observed with the use of small particle silica based materials for high performance affinity chromatography. These include greatly improved mass transfer properties which allow separations that are not always practical in the low performance mode, greatly reduced equilibration and isolation times, high available ligand densities, small elution volumes, excellent recovery of very small quantities of protein and high dynamic capacities. The criteria for developing a general, derivatizable, high performance support for high performance affinity chromatography are discussed. The step-by-step examination of these criteria and experimental evidence for determining parameters such as ligand density, non-specific adsorption and column life time for such a system are described. Chromatographic results are shown for preparative separations of (i) receptor proteins, (ii) antibodies and (iii) active enzymes.  相似文献   

10.
The adsorption of two classes of carboxylic ligands (i.e., aliphatic and aromatic small molecules), onto α-alumina nanoparticles was investigated. A new methodology was used whereby two molecules were simultaneously equilibrated with the inorganic material. A two-dimensional representation of the adsorption of the two complexing molecules enables us to differentiate between pairs of ligands with (i) independent adsorption on different sites of the alumina particles, (ii) competing adsorption on the same sites, or (iii) a mix thereof. Both the highest affinity ligands (tetracarboxylic acid, citric acid, and tiron), and the way they compete with lower affinity ligands have been identified. The combination of carbon skeleton and complexing groups required to produce the ligand of highest affinity at pH 5 has been recognized. In particular, the role of the OH in the α position of a carboxylic group and the role of the distance between two carboxylic groups are emphasized.  相似文献   

11.
Affinity adsorbents based on immobilized triazine dyes offer important advantages circumventing many of the problems associated with biological ligands. The main drawback of dyes is their moderate selectivity for proteins. Rational attempts to tackle this problem are realized through the biomimetic dye concept according to which new dyes, the biomimetic dyes, are designed to mimic natural ligands. Biomimetic dyes are expected to exhibit increased affinity and purifying ability for the targeted proteins. Biocomputing offers a powerful approach to biomimetic ligand design. The successful exploitation of contemporary computational techniques in molecular design requires the knowledge of the three-dimensional structure of the target protein, or at least, the amino acid sequence of the target protein and the three-dimensional structure of a highly homologous protein. From such information one can then design, on a graphics workstation, the model of the protein and also a number of suitable synthetic ligands which mimic natural biological ligands of the protein. There are several examples of enzyme purifications (trypsin, urokinase, kallikrein, alkaline phosphatase, malate dehydrogenase, formate dehydrogenase, oxaloacetate decarboxylase and lactate dehydrogenase) where synthetic biomimetic dyes have been used successfully as affinity chromatography tools.  相似文献   

12.
Affinity chromatography separations of proteins call for highly specific ligands. Antibodies are the most obvious approach; however, except for specific situations, technical and economic reasons are arguments against this choice especially for preparative purposes. With this in mind, the rationale is to select the most appropriate ligands from collections of pre‐established molecules. To reach the objective of having a large structural coverage, combinatorial libraries have been proposed. These are classified according to their nature and origin. This review presents and discusses the most common affinity ligand libraries along with the most appropriate screening methods for the identification of the right affinity chromatography selective structure according to the type of library; a side‐by‐side comparison is also presented.  相似文献   

13.
Multi-hydroxyl amines including tris(hydroxymethyl)aminomethane (Tris), serinol and ethanolamine were selected as weak affinity ligands using a rapid screening by quartz crystal microbalance (QCM) biosensor. Based on the specific recognition between the ligands and two proteins, lysozyme (LZM) and cytochrome c (Cyt c), a weak affinity chromatography method was developed for specific separation of the two proteins. The frontal analysis results showed that the apparent dissociation constants (KD) of ligand–protein complexes were all in the order of weak affinity (10−4 M). By weak affinity columns modified with the three multi-hydroxyl amines individually, LZM and Cyt c were baseline separated as retarded peaks from non-specific protein and each other in a single cycle of loading and eluting. Moreover, the Tris-modified column typically showed the satisfactory repeatability and stability as a new type of weak affinity columns. The present strategy composed of QCM selecting and affinity chromatography separating was promising to extend the variety of weak affinity ligands and develop inexpensive specific affinity methods for separation and purification of multiple proteins on one single column.  相似文献   

14.
Methyl vinyl ether-maleic anhydride copolymer (MMAC) is a water-insoluble polymer with an acid anhydride group which reacts with amino groups of ligands to form stable amide bonds. MMAC was used to immobilize protein ligands on two kinds of supports, the wells of plastic microtitre plates for enzyme-linked immunosorbent assay and related methods, and gels for affinity adsorbents. The wells were first coated with MMAC and then allowed to react with proteins. The immobilization of proteins by this method was efficient and occurred in a dose-dependent manner. Shodex Et123, a gel having amino groups, was incubated with MMAC, and then the activated Shodex was used to immobilize high concentrations of proteins. Concanavalin A-Shodex thus obtained had high affinities and was successfully used for the high-performance liquid affinity chromatography of sugar derivatives on a short column.  相似文献   

15.
Different affinity chromatography ligands have been compared for the purification of guanosine triphosphate (GTP) cyclohydrolase I, an enzyme that catalyses the transformation of GTP into formate and dihydroneopterin triphosphate, the first metabolite in the biosynthetic pathway of the pterins. When this enzyme is purified by affinity chromatography on GTP-Sepharose a major fraction of the activity is lost and the yield of enzyme decreases as the amount of enzyme applied to the column decreases. The use of nucleotide competitive inhibitors (UTP and ATP) as ligands in the affinity column has shown that the extent of inactivation of the enzyme is related to the affinity of the enzyme for the ligand. Further, the extent of inactivation was reduced by reducing the length of the columns when using the same volume of GTP-Sepharose. Dihydrofolate-Sepharose gave consistently higher yields of GTP cyclohydrolase I regardless of the amount of enzyme applied, but several other proteins were also obtained. For a high purification of GTP cyclohydrolase I the best yield may be obtained with UTP as the affinity ligand and with the shortest length possible of the affinity column, and the purity of enzyme is comparable with that obtained with GTP-Sepharose.  相似文献   

16.
Affinity precipitation was compared to affinity chromatography and batch adsorption as the final purification step in a protocol for the isolation of haemoglobin from human blood. Haptoglobin was the affinity ligand. The first steps on the process were realized by traditional methods (lyses of red blood cells followed by ammonium sulphate precipitation). For affinity chromatography (and batch adsorption) the ligand was linked to Sepharose, for affinity precipitation to a thermoresponsive polymer, namely poly(N-isopropylacrylamide). Five haptoglobin-poly(N-isopropylacrylamide) bioconjugates (affinity macroligands) were constructed with different polymer: haptoglobin-coupling ratios. Conjugation of haptoglobin to the soluble poly(N-isopropylacrylamide) apparently does not change the interaction thermodynamics with haemoglobin, as the haemoglobin binding constants calculated by a Scatchard analysis for the affinity macroligand were of the same order of magnitude as those described in the literature for the haemoglobin-haptoglobin complex in solution. Two elution protocols were used for haemoglobin release from the various affinity materials, one at pH 2, the other with 5 M urea at pH 11. Both affinity chromatography and affinity precipitation yielded a pure haemoglobin of high quality. Compared to the affinity chromatography, affinity precipitation showed a significantly higher ligand efficiency (ratio of the experimental capacity to the theoretical one). The method thus makes better use of the expensive affinity ligands. As affinity precipitation only requires small temperature changes to bring about precipitation/redissolution of the affinity complexes and a centrifugation step for recovery of the precipitate, the method in addition has advantages in term of scalability and simplicity.  相似文献   

17.
The combined use of silica-based chromatographic supports with immobilized affinity ligands can be used in many preparative and analytical applications. One example is the use of silica-based affinity columns in HPLC, giving rise to a method known as high-performance affinity chromatography (HPAC). This review discusses the role that silica has played in the development of affinity chromatography and HPAC and the applications of silica in these methods. This includes a discussion of the types of ligands that have been employed with silica and the methods by which these ligands have been immobilized. Various formats have also been presented for the use of silica in affinity chromatographic methods, including assays involving direct or indirect analyte detection, on-line or off-line affinity extraction, and chiral separations. The use of silica-based affinity columns in studies of biological systems based on zonal elution and frontal analysis methods will also be considered.  相似文献   

18.
Endotoxins (also known as lipopolysaccharides (LPS)) are undesirable by products of recombinant proteins, purified from Escherichia coli. LPS can be considered stable under a wide range of temperature and pH, making their removal one of the most difficult tasks in downstream processes during protein purification. The inherent toxicity of LPS makes their removal an important step for the application of these proteins in several biological assays and for a safe parenteral administration. Immobilized metal affinity chromatography (IMAC) enables the affinity interactions between the metal ions (immobilized on the support through the chelating compound) and the target molecules, thus enabling high efficiency separation of the target molecules from other components present in a mixture. Affinity chromatography is applied with Ca2+ iminodiacetic acid (IDA) to remove most of the LPS contaminants from the end product (more than 90%). In this study, the adsorption of LPS on an IDA-Ca2+was investigated. The adsorption Freundlich isotherm of LPS-IDA-Ca2+provides a theoretical basis for LPS removal. It was found that LPS is bound mainly by interactions between the phosphate group in LPS and Ca2+ligands on the beads. The factors such as pH (4.0 or 5.5) and ionic strength (1.0 mol/L) are essential to obtain effective removal of LPS for contaminant levels between endotoxin’ concentration values less than 100 EU/mL and 100000 EU/mL. This new protocol represents a substantial advantage in time, effort, and production costs.  相似文献   

19.
The most selective purification method for proteins and other biomolecules is affinity chromatography. This method is based on the unique biological‐based specificity of the biomolecule–ligand interaction and commonly uses biological ligands. However, these ligands may present some drawbacks, mainly because of their cost and lability. Dye‐affinity chromatography overcomes the limitations of biological ligands and is widely used owing to the low cost of synthetic dyes and to their resistance to biological and chemical degradation. In this work, immobilized aminosquarylium cyanine dyes are used in order to exploit affinity interactions with standard proteins such as lysozyme, α‐chymotrypsin and trypsin. These studies evaluate the affinity interactions occurring between the immobilized ligand and the different proteins, as a reflection of the sum of several molecular interactions, namely ionic, hydrophobic and van der Waals, spread throughout the structure, in a defined spatial manner. The results show the possibility of using an aminosquarylium cyanine dye bearing a N‐hexyl pendant chain, with a ligand density of 1.8 × 10?2 mmol of dye/g of chromatographic support, to isolate lysozyme, α‐chymotrypsin and trypsin from a mixture. The application of a decreasing ammonium sulfate gradient resulted in the recovery of lysozyme in the flowthrough. On the other hand, α‐chymotrypsin and trypsin were retained, involving different interactions with the ligand. In conclusion, this study demonstrates the potential applicability of ligands such as aminosquarylium cyanine dyes for the separation and purification of proteins by affinity chromatography. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

20.
Affinity chromatography of proteins requires a ligand covalently bound to a solid support separated by a spacer of sufficient length. In the specific case of acetyl-cholinesterase we have reduced the conventional spacer synthesis from five to three steps. For affinity chromatography of cholinergic proteins the ideal ligand would be acetylcholine which, however, could not be used because it is easily hydrolyzed. We synthesized hydrolysis-resistent ligands. Different specific ligands were synthesized for the affinity chromatography of serum esterase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号