共查询到20条相似文献,搜索用时 15 毫秒
1.
Leah N. Appelhans 《Journal of organometallic chemistry》2008,693(16):2761-2766
A stepwise synthesis of mixed monodentate bis-NHC complexes of Ir(I), employing Ag(I)NHC complexes as transfer agents, yields complexes with two monodentate NHCs having different steric and electronic characteristics. The crystal structure of the mixed complex (5) with both a triazole-derived NHC ligand and an imidazole-derived NHC ligand is reported and both the NHC ring geometry and the M-NHC bond lengths are similar to related complexes. The complexes maintain their integrity over time and do not disproportionate, consistent with the NHC ligands not being labile. 相似文献
2.
Francisca M. Albertí Juan J. Fiol Angel García-Raso Marta Torres A. Terrón Miquel Barceló-Oliver María J. Prieto Virtudes Moreno Elies Molins 《Polyhedron》2010
A new chloride-dimethylsulfoxide-ruthenium(III) complex with nicotine trans-[RuIIICl4(DMSO)[H-(Nicotine)]] (1) and three related iridium(III) complexes; [H-(Nicotine)]trans-[IrIIICl4(DMSO)2] (2), trans-[IrIIICl4(DMSO)[H-(Nicotine)]] (3) and mer-[IrIIICl3(DMSO)(Nicotine)2] (4) have been synthesized and characterized by spectroscopic techniques and by single crystal X-ray diffraction (1, 2, and 4). Protonated nicotine at pyrrolidine nitrogen is present in complexes 1 and 3 while two neutral nicotine ligands are observed in 4. In these three inner-sphere complexes coordination occurs through the pyridine nitrogen. Moreover, in the outer-sphere complex 2, an electrostatic interaction is observed between a cationic protonated nicotine at the pyrrolidine nitrogen and the anionic trans-[IrIIICl4(DMSO)2]¯ complex. 相似文献
3.
4.
Swanick KN Ladouceur S Zysman-Colman E Ding Z 《Chemical communications (Cambridge, England)》2012,48(26):3179-3181
Electrochemiluminescence (ECL) of four bright iridium(III) complexes containing aryltriazole cyclometallated ligands is reported. The ECL mechanisms, spectra and high efficiencies via annihilation and coreactant paths have been investigated. 相似文献
5.
Song YH Chiu YC Chi Y Cheng YM Lai CH Chou PT Wong KT Tsai MH Wu CC 《Chemistry (Weinheim an der Bergstrasse, Germany)》2008,14(18):5423-5434
A series of blue phosphorescent iridium(III) complexes 1-4 with nonconjugated N-benzylpyrazole ligands were synthesized and their structural, electrochemical, and photophysical properties were investigated. Complexes 1-4 exhibit phosphorescence with yields of 5-45 % in degassed CH2Cl2. Of the compounds, 1 showed emission that was nearly true blue at 460 nm with a lack of vibronic progression. These photophysical data clearly demonstrate that the methylene spacer of the cyclometalated N-benzylpyrazole chelate effectively interrupts the pi conjugation upon reacting with a third L X chelating chromophore. This gives a feasible synthesis for the blue phosphorescent complexes with a sufficiently large energy gap. In another approach, these complexes were investigated for their suitability for the host material in phosphorescent OLEDs. The device was synthesized by using 1 as the host for the green-emitting [Ir(ppy)3] dopant, which exhibits an external quantum conversion efficiency (EQE) of up to 11.4 % photons per electron (and 36.6 cdA(-1)), with 1931 Commission Internationale de L'Eclairage (CIE) coordinates of (0.30, 0.59), a peak power efficiency of 21.7 lmW(-1), and a maximum brightness of 32000 cdm(-2) at 14.5 V. At the practical brightness of 100 cdm(-2), the efficiency remains above 11 % and 18 lmW(-1), demonstrating its great potential as the host material for phosphorescent organic light-emitting diodes. 相似文献
6.
N. M. Laptash E. V. Kovaleva A. A. Mashkovskii A. Yu. Beloliptsev L. A. Zemnukhova 《Journal of Structural Chemistry》2007,48(5):848-854
Vibrational and 17O NMR spectroscopy in combination with quantum chemical calculations are used to investigate the hydrolysis of antimony(III) fluoride complexes. A hydrolytic decomposition of SbF3 and [SbF4]? is accompanied by oligomerization with the formation of edge-and corner-connected dimers ([Sb2O2F4]2?, [Sb2OF8]4?) and trimers ([Sb3O3F6]3?, [Sb3OF9]2?) with bridging oxygen atoms. The hydrolysis of [SbF4]? is also characterized by the presence in the solution of a discrete cation of [SbF5]2? which is least hydrolized. Only a partial isomorphic substitution of fluoride ion by hydroxide one is possible, which is reflected in the composition of K2Sb(OH)xF5?x (x = 0.3) crystals isolated from the fluoride aqueous solution. 相似文献
7.
Hydride complexes IrHCl(2)(PiPr(3))P(2) (1) and IrHCl(2)P(3) (2) [P = P(OEt)(3) and PPh(OEt)(2)] were prepared by allowing IrHCl(2)(PiPr(3))(2) to react with phosphite in refluxing benzene or toluene. Treatment of IrHCl(2)P(3), first with HBF(4).Et(2)O and then with an excess of ArCH(2)N(3), afforded benzyl azide complexes [IrCl(2)(eta(1)-N(3)CH(2)Ar)P(3)]BPh(4) (3, 4) [Ar = C(6)H(5), 4-CH(3)C(6)H(4); P = P(OEt)(3), PPh(OEt)(2)]. Azide complexes reacted in CH(2)Cl(2) solution, leading to the imine derivative [IrCl(2){eta(1)-NH=C(H)C(6)H(5)}P(3)]BPh(4) (5). The complexes were characterized by spectroscopy and X-ray crystal structure determination of [IrCl(2)(eta(1)-N(3)CH(2)C(6)H(5)){P(OEt)(3)}(3)]BPh(4) (3a) and [IrCl(2){eta(1)-NH=C(H)C(6)H(5)}{P(OEt)(3)}(3)]BPh(4) (5a). Both solid-state structure and (15)N NMR data indicate that the azide is coordinated through the substituted Ngamma [Ir]-Ngamma(CH(2)Ar)NNalpha nitrogen atom. 相似文献
8.
Zhao Q Li L Li F Yu M Liu Z Yi T Huang C 《Chemical communications (Cambridge, England)》2008,(6):685-687
A novel aggregation-induced phosphorescent emission (AIPE) was observed for iridium(III) complexes. This interesting phenomenon was attributed to the intermolecular packing, resulting in a switch from the non-emissive 3LX excited state to the emissive 3MLLCT transition, which is confirmed by X-ray diffraction studies as well as theoretical calculations. 相似文献
9.
10.
11.
The electrochemical behaviour of [Ir(bipy)2Cl2]+ and [Ir(phen)2Cl2]+ (bipy = 2,2′-bipyridine; phen = 1,10-phenanthroline) has been investigated in N,N-dimethylformamide (DMF). In potential sweep voltammetry [Ir(bipy)2Cl2]+ exhibits four reduction peaks. The first two processes involve one electron and are reversible in our conditions. The third reduction step is irreversible and has been attributed to the addition of three electrons to [Ir(bipy)2Cl2]+ followed by fast liberation of ligands. The data obtained for the fourth peak are consistent with a one-electron reversible process. The behaviour of [Ir(phen)2Cl2]+ is more complicated than that found for the bipy complex. In this case in fact, in addition to the four peaks observed in the case of the bipy complex, two other peaks appear. The latter have been attributed to the reduction of phen molecules liberated by the reduction of the complex. A qualitative MO discussion of the nature of the molecular levels involved in the reduction processes is also reported. 相似文献
12.
The synthesis and luminescence of four new iridium (III) diazine complexes (1-4) were investigated. HOMO and LUMO energy levels of the complexes were estimated according to the electrochemical performance and the UV-Vis absorption spectra, showing the pyrimidine complexes have a larger increase for the LUMO than the HOMO orbital in comparison with the pyrazine complexes. Several high-efficiency yellow and green OLEDs based on phosphorescent iridium (III) diazine complexes were obtained. The devices emitting yellow light based on 1 with turn-on voltage of 4.1 V exhibited an external quantum efficiency of 13.2% (power efficiency 20.3 lm/W), a maximum current efficiency of 37.3 cd/A. The electroluminescent performance for the green iridium pyrimidine complex of 3 is comparable to that of the iridium pyridine complex (PPY)2Ir(acac) (PPY = 2-phenylpyridine), which is among the best reported. 相似文献
13.
Very efficient electrogenerated chemiluminescence (ECL) phenomena were realized by deliberately tuning electron-transfer reactions from electrochemically generated electron donor to metal complex radical cations. By controlling the relative positions of HOMO and LUMO levels (oxidation potential and reduction potential) of Ir(III) complexes, we could obtain 77 times higher ECL from iridium(III) complexes in the presence of TPA than that of the Ru(bpy)32+/TPA system. This high ECL efficiency of new Ir(III) complexes can be used in many interesting applications such as sensors and luminescent devices. 相似文献
14.
Summary New complexes of the general formula M(L)3Cl3 and M(5-AInz)2Cl3 · n H2O (where M = RuIII, RhIII and IrIII; L = indazole and 5-nitroindazole; n=1–2) have been synthesized and characterised by elemental analysis, molar conductance, magnetic susceptibility and i.r. and electronic spectral measurements. All the complexes are covalent and apparently have an octahedral geometry. The ligands are monocoordinated through the pyrrole nitrogen. From the far i.r. spectra amer configuration has been assigned to the indazole and 5-nitroindazole complexes. 相似文献
15.
Iridium(III) complexes are one of the most important electrophosphorescent dyes with tunable emissions in the range of visible and near infrared lights, high photoluminescence yields and short lifetimes for high-efficiency organic light-emitting diodes (OLED) with 100% exciton harvesting. This review summarizes the recent development of electroluminescent Ir3+ complexes functionalized with host-featured carrier-transporting groups, with emphasis on correlations between functionalization, optoelectronic properties and device performance. According to the introducing approaches, the complexes were sorted with conjugated and aliphatic linkages, as well as the types of functional groups. The modification effect on physical properties and the state-of-the-art device performances were discussed. 相似文献
16.
17.
Yongkang Xie Shumiao Zhang Xingxing Ge Wenli Ma Xiaolin He Yao Zhao Juan Ye Hongmin Zhang Anwei Wang Zhe Liu 《应用有机金属化学》2020,34(5):e5589
Ten half-sandwich iridium complexes containing lonidamine amide derivatives were synthesized and characterized. Unlike lonidamine, which acts on mitochondria, its iridium complexes successfully targeted lysosomes and induced lysosomal damage. Antiproliferation studies showed that most of the complexes have higher anticancer activity against A549 and HeLa cells than cisplatin. The antitumor activity of complex 6 is 2.69 times that of cisplatin against A549 cells. We also performed antitumor tests on ligands L1 and L5, and proved that they exhibit excellent antitumor activity only after binding to the metal center. The bovine serum albumin (BSA) binding test showed that the complexes had the ability to bind to BSA, and they interact with BSA by a static mechanism. The complexes can also cause changes in mitochondrial membrane potential and can produce active oxygen species better than active control. NADH/NAD+ transformation experiments were used to determine if the production of ROS was caused by the transformation of NADH/NAD+. We also explored the way that the complexes enter cells. 相似文献
18.
Meiners J Scheibel MG Lemée-Cailleau MH Mason SA Boeddinghaus MB Fässler TF Herdtweck E Khusniyarov MM Schneider S 《Angewandte Chemie (International ed. in English)》2011,50(35):8184-8187
Squaring the circle: the novel dienamido pincer ligand N(CHCHPtBu(2))(2)(-) affords the isolation of the unusual square-planar iridium(II) and iridium(III) amido complexes [IrCl{N(CHCHPtBu(2))(2)}](n) (n=0 (1), +1 (2)). In contrast, the corresponding iridium(I) complex of the redox series (n=-1) is surprisingly unstable. The diamagnetism of 2 is attributed to strong N→Ir π donation. 相似文献
19.
Herein we report the synthesis of 4-aryl-1-benzyl-1H-1,2,3-triazoles (atl), made via "Click chemistry" and their incorporation as cyclometallating ligands into new heteroleptic iridium(III) complexes containing diimine (N(^)N) ancillary ligands 2,2'-bipyridine (bpy) and 4,4'-di-tert-butyl-2,2'-bipyridine (dtBubpy). Depending on decoration, these complexes emit from the yellow to sky blue in acetonitrile (ACN) solution at room temperature (RT). Their emission energies are slightly blue-shifted and their photoluminescent quantum efficiencies are markedly higher (between 25 and 80%) than analogous (C(^)N)(2)Ir(N(^)N)(+) type complexes, where C(^)N is a decorated 2-phenylpyridinato ligand. This increased brilliance is in part due to the presence of the benzyl groups, which act to sterically shield the iridium metal center. X-ray crystallographic analyses of two of the atl complexes corroborate this assertion. Their electrochemistry is reversible, thus making these complexes amenable for inclusion in light-emitting electrochemical cells (LEECs). A parallel computational investigation supports the experimental findings and demonstrates that for all complexes included in this study, the highest occupied molecular orbital (HOMO) is located on both the aryl fragment of the atl ligands and the iridium metal while the lowest unoccupied molecular orbital (LUMO) is located essentially exclusively on the ancillary ligand. 相似文献
20.
Biscyclometalated iridium(III) complexes with an ancillary acetylacetone ligand, Ir(L)(2)(acac), (L = 2-(benzo[b]thiophen-2-yl)pyridine (btp), 1-phenylisoquinoline (piq), 2-phenylbenzothiazole (bt), 2-phenylpyridine (ppy), acac = deprotonated acetylacetone), demonstrate spectroscopic changes in their UV-Vis absorption and luminescent emission under acidic conditions. Such changes were found to be the same as those observed when certain mercury salts exist in the systems. Because some iridium(III) complexes have sulfur-containing ligands (i.e., btp and bt), a question was then raised as for whether or not the spectroscopic changes are associated with the specific affinity of Hg(2+) to the sulfur atom. Extensive studies performed in this work unambiguously proved that the observed spectroscopic changes were solely the results of the acid induced departure of acac and the follow-up coordination of solvent acetonitrile to the iridium(III) center and that the generally anticipated Hg(2+)-S affinity and its effect on the photophysical properties of iridium(III) luminophores did not play a role. 相似文献