首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Thirty-two samples from the human gastric mucosa tissue, including 13 normal and 19 malignant tissue samples were measured by confocal Raman microspectroscopy. The low signal-to-background ratio spectra from human gastric mucosa tissues were obtained by this technique without any sample preparation. Raman spectral interferences include a broad featureless sloping background due to fluorescence and noise. They mask most Raman spectral feature and lead to problems with precision and quantitation of the original spectral information. A preprocessed algorithm based on wavelet analysis was used to reduce noise and eliminate background/baseline of Raman spectra. Comparing preprocessed spectra of malignant gastric mucosa tissues with those of counterpart normal ones, there were obvious spectral changes, including intensity increase at approximately 1156cm(-1) and intensity decrease at approximately 1587cm(-1). The quantitative criterion based upon the intensity ratio of the approximately 1156 and approximately 1587cm(-1) was extracted for classification of the normal and malignant gastric mucosa tissue samples. This could result in a new diagnostic method, which would assist the early diagnosis of gastric cancer.  相似文献   

2.
The diagnostic ability of optical spectroscopy techniques, including near-infrared (NIR) Raman spectroscopy, NIR autofluorescence spectroscopy and the composite Raman and NIR autofluorescence spectroscopy, for in vivo detection of malignant tumors was evaluated in this study. A murine tumor model, in which BALB/c mice were implanted with Meth-A fibrosarcoma cells into the subcutaneous region of the lower back, was used for this purpose. A rapid-acquisition dispersive-type NIR Raman system was employed for tissue Raman and NIR autofluorescence spectroscopic measurements at 785-nm laser excitation. High-quality in vivo NIR Raman spectra associated with an autofluorescence background from mouse skin and tumor tissue were acquired in 5 s. Multivariate statistical techniques, including principal component analysis (PCA) and linear discriminant analysis (LDA), were used to develop diagnostic algorithms for differentiating tumors from normal tissue based on their spectral features. Spectral classification of tumor tissue was tested using a leave-one-out, cross-validation method, and the receiver operating characteristic (ROC) curves were used to further evaluate the performance of diagnostic algorithms derived. Thirty-two in vivo Raman, NIR fluorescence and composite Raman and NIR fluorescence spectra were analyzed (16 normal, 16 tumors). Classification results obtained from cross-validation of the LDA model based on the three spectral data sets showed diagnostic sensitivities of 81.3%, 93.8% and 93.8%; specificities of 100%, 87.5% and 100%; and overall diagnostic accuracies of 90.6%, 90.6% and 96.9% respectively, for tumor identification. ROC curves showed that the most effective diagnostic algorithms were from the composite Raman and NIR autofluorescence techniques.  相似文献   

3.
Kerssens MM  Matousek P  Rogers K  Stone N 《The Analyst》2010,135(12):3156-3161
A new diagnostic concept based on deep Raman spectroscopy is proposed permitting the non-invasive determination of the level of carbonate substitution in type II calcifications (HAP). The carbonate substitution has shown to be directly associated with the pathology of the surrounding breast tissue and different pathology groups can therefore be separated using specific features in the Raman spectra of the calcifications. This study explores the principle of distinguishing between type II calcifications, found in proliferating lesions, by using the strongest Raman peak from calcium hydroxyapatites (the phosphate peak at 960 cm(-1)) to act as a surrogate marker for carbonate substitution levels. It is believed that carbonate ion substitution leads to a perturbation of the hydroxyapatite lattice which in turn affects the phosphate vibrational modes. By studying calcifications, with known carbonate content, buried in porcine tissue it has been possible to evaluate the feasibility of using the proposed approach to probe the composition of the calcifications in vivo and hence provide pathology specific information non-invasively, in real time. Using the proposed concept we were able to determine the level of carbonate substitutions through soft tissue phantom samples (total thickness of 5.6 mm). As the level of carbonate substitution has been previously correlated with mid-FTIR to the lesion type, i.e. whether benign or invasive or in situ carcinoma, the new findings provide a major step forward towards establishing a new capability for diagnosing benign and malignant lesions in breast tissue in a safe and non-invasive manner in vivo.  相似文献   

4.
Duraipandian S  Zheng W  Ng J  Low JJ  Ilancheran A  Huang Z 《The Analyst》2011,136(20):4328-4336
This study aimed to evaluate the clinical utility of applying near-infrared (NIR) Raman spectroscopy and genetic algorithm-partial least squares-discriminant analysis (GA-PLS-DA) to identify biomolecular changes of cervical tissues associated with dysplastic transformation during colposcopic examination. A total of 105 in vivo Raman spectra were measured from 57 cervical sites (35 normal and 22 precancer sites) of 29 patients recruited, in which 65 spectra were from normal sites, while 40 spectra were from cervical precancerous lesions (i.e., 7 low-grade CIN and 33 high-grade CIN). The GA feature selection technique incorporated with PLS was utilized to study the significant biochemical Raman bands for differentiation between normal and precancer cervical tissues. The GA-PLS-DA algorithm with double cross-validation (dCV) identified seven diagnostically significant Raman bands in the ranges of 925-935, 979-999, 1080-1090, 1240-1260, 1320-1340, 1400-1420, and 1625-1645 cm(-1) related to proteins, nucleic acids and lipids in tissue, and yielded a diagnostic accuracy of 82.9% (sensitivity of 72.5% (29/40) and specificity of 89.2% (58/65)) for precancer detection. The results of this exploratory study suggest that Raman spectroscopy in conjunction with GA-PLS-DA and dCV methods has the potential to provide clinically significant discrimination between normal and precancer cervical tissues at the molecular level.  相似文献   

5.
Ovarian cancer is the sixth most common cancer among women worldwide, and mortality rates from this cancer are higher than for other gynecological cancers. This is attributed to a lack of reliable screening methods and the inadequacy of treatment modalities for the advanced stages of the disease. FTIR and Raman spectroscopic studies of formalin-fixed normal, benign, and malignant ovarian tissues have been undertaken in order to investigate and attempt to understand the underlying biochemical changes associated with the disease, and to explore the feasibility of discriminating between these different tissue types. Raman spectra of normal tissues indicate the dominance of proteins and lower contents of DNA and lipids compared to malignant tissues. Among the pathological tissues studied, spectra from benign tissues seem to contain more proteins and less DNA and lipids compared to malignant tissue spectra. FTIR studies corroborate these findings. FTIR and Raman spectra of both normal and benign tissues showed more similarities than those of malignant tissues. Cluster analysis of first-derivative Raman spectra in the 700–1700 cm−1 range gave two clear groups, one corresponding to malignant and the other to normal+benign tissues. At a lower heterogeneity level, the normal+benign cluster gave three nonoverlapping subclusters, one corresponding to normal and two for benign tissues. Cluster analysis of second-derivative FTIR spectra in the combined spectral regions of 1540–1680 and 1720–1780 cm−1 resulted into two clear clusters corresponding to malignant and normal+benign tissues. The cluster corresponding to normal+benign tissues produced nonoverlapping subclusters for normal and benign tissues at a lower heterogeneity level. The findings of this study demonstrate the feasibility of Raman and FTIR microspectroscopic discrimination of formalin-fixed normal, benign, and malignant ovarian tissues.  相似文献   

6.
Raman spectroscopy (RS) has potential for disease classification within the gastrointestinal tract (GI). A near-infrared (NIR) fiber-optic RS system has been developed previously. This study reports the first in vivo Raman spectra of human gastrointestinal tissues measured during routine clinical endoscopy. This was achieved by using this system with a fiber-optic probe that was passed through the endoscope instrument channel and placed in contact with the tissue surface. Spectra could be obtained with good signal-to-noise ratio in 5 s. The effects on the spectra of varying the pressure of the probe tip on the tissue and of the probe-tissue angle were determined and shown to be insignificant. The limited set of spectra from normal and diseased tissues revealed only subtle differences. Therefore, powerful spectral-sorting algorithms, successfully implemented in prior ex vivo studies, are required to realize the full diagnostic potential of RS for tissue classification in the GI.  相似文献   

7.
Breast calcifications are often the only mammographic features indicating the presence of a cancerous lesion. Calcium oxalate (type I) may be found in and around benign lesions, however calcium hydroxyapatite (type II) is usually found within proliferative lesions, which can include both benign and malignant pathologies. However, the composition of type II calcifications has been demonstrated to vary between benign and malignant proliferative lesions, and could be an indicator for the possible disease state. Raman spectroscopy has previously been demonstrated as a powerful tool for non-destructive analysis of tissues, utilising laser light to probe chemical composition. Raman spectroscopy is traditionally a surface technique. However, we have recently developed methods that permit its application for obtaining sample composition to clinically relevant depths of many mm. We report the first demonstration of spatially offset Raman spectroscopy (SORS) for potential in vivo breast analysis. This study evaluates the possibility of utilising SORS for measuring calcification composition through varying thicknesses of tissues (2 to 10 mm), which is about one to two orders of magnitude deeper than has been possible with conventional Raman approaches. SORS can be used to distinguish non-invasively between calcification types I and II (and carbonate substitution of phosphate in calcium hydroxyapatite) within tissue of up to 10 mm deep. This result secures the first step in taking this technique forward for clinical applications seeking to use Raman spectroscopy as an adjunct to mammography for early diagnosis of breast cancer, by utilising both soft tissue and calcification signals. Non-invasive elucidation of calcification composition, and hence type, associated with benign or malignant lesions, could eliminate the requirement for biopsy in many patients.  相似文献   

8.
The identification of normal and cancer breast tissue of rats was investigated using high-frequency (HF) FT-Raman spectroscopy with a near-infrared excitation source on in vivo and ex vivo measurements. Significant differences in the Raman intensities of prominent Raman bands of lipids and proteins structures (2,800?C3,100?cm?1) as well as in the broad band of water (3,100?C3,550?cm?1) were observed in mean normal and cancer tissue spectra. The multivariate statistical analysis methods of principal components analysis (PCA) and linear discriminant analysis (LDA) were performed on all high-frequency Raman spectra of normal and cancer tissues. LDA results with the leave-one-out cross-validation option yielded a discrimination accuracy of 77.2, 83.3, and 100% for in vivo transcutaneous, in vivo skin-removed, and ex vivo biopsy HF Raman spectra. Despite the lower discrimination value for the in vivo transcutaneous measurements, which could be explained by the breathing movement and skin influences, our results showed good accuracy in discriminating between normal and cancer breast tissue samples. To support this, the calculated integration areas from the receiver-operating characteristic (ROC) curve yielded 0.86, 0.94, and 1.0 for in vivo transcutaneous, in vivo skin-removed, and ex vivo biopsy measurements, respectively. The feasibility of using HF Raman spectroscopy as a clinical diagnostic tool for breast cancer detection and monitoring is due to no interfering contribution from the optical fiber in the HF Raman region, the shorter acquisition time due to a more intense signal in the HF Raman region, and the ability to distinguish between normal and cancerous tissues.  相似文献   

9.
Breast calcifications are found in both benign and malignant lesions and their composition can indicate the disease state. Calcium oxalate (dihydrate) (COD) is associated with benign lesions, however calcium hydroxyapatite (HAP) is found mainly in proliferative lesions including carcinoma. The diagnostic practices of mammography and histopathology examine the morphology of the specimen. They can not reliably distinguish between the two types of calcification, which may indicate the presence of a cancerous lesion during mammography. We demonstrate for the first time that Kerr-gated Raman spectroscopy is capable of non-destructive probing of sufficient biochemical information from calcifications buried within tissue, and this information can potentially be used as a first step in identifying the type of lesion. The method uses a picosecond pulsed laser combined with fast temporal gating of Raman scattered light to enable spectra to be collected from a specific depth within scattering media by collecting signals emerging from the sample at a given time delay following the laser pulse. Spectra characteristic of both HAP and COD were obtained at depths of up to 0.96 mm, in both chicken breast and fatty tissue; and normal and cancerous human breast by utilising different time delays. This presents great potential for the use of Raman spectroscopy as an adjunct to mammography in the early diagnosis of breast cancer.  相似文献   

10.
Simple SummaryAnalytical discrimination models of Raman spectra of prostate cancer tissue were constructed by using the projections onto latent structures data analysis (PLS-DA) method for different wavelengths of exciting radiation—532 and 785 nm. These models allowed us to divide the Raman spectra of prostate cancer and the spectra of hyperplasia sites for validation datasets with the accuracy of 70–80%, depending on the specificity value. Meanwhile, for the calibration datasets, the accuracy values reached 100% for the excitation of a laser with a wavelength of 785 nm. Due to the registration of Raman “fingerprints”, the main features of cellular metabolism occurring in the tissue of a malignant prostate tumor were confirmed, namely the absence of aerobic glycolysis, over-expression of markers, and a strong increase in the concentration of cholesterol and its esters, as well as fatty acids and glutamic acid.AbstractThe possibilities of using optical spectroscopy methods in the differential diagnosis of prostate cancer were investigated. Analytical discrimination models of Raman spectra of prostate tissue were constructed by using the projections onto latent structures data analysis(PLS-DA) method for different wavelengths of exciting radiation—532 and 785 nm. These models allowed us to divide the Raman spectra of prostate cancer and the spectra of hyperplasia sites for validation datasets with the accuracy of 70–80%, depending on the specificity value. Meanwhile, for the calibration datasets, the accuracy values reached 100% for the excitation of a laser with a wavelength of 785 nm. Due to the registration of Raman “fingerprints”, the main features of cellular metabolism occurring in the tissue of a malignant prostate tumor were confirmed, namely the absence of aerobic glycolysis, over-expression of markers (FASN, SREBP1, stearoyl-CoA desaturase, etc.), and a strong increase in the concentration of cholesterol and its esters, as well as fatty acids and glutamic acid. The presence of an ensemble of Raman peaks with increased intensity, inherent in fatty acid, beta-glucose, glutamic acid, and cholesterol, is a fundamental factor for the identification of prostate cancer.  相似文献   

11.
Kendall C  Day J  Hutchings J  Smith B  Shepherd N  Barr H  Stone N 《The Analyst》2010,135(12):3038-3041
Early detection of (pre-)cancerous changes improves prognosis, therefore in the UK patients at high risk of developing gastrointestinal cancers are enrolled on endoscopic surveillance programmes or the Bowel Cancer Screening Programme. The current gold standard technique for the detection of pre-cancerous changes in the gastrointestinal tract is histopathological analysis of biopsy tissue collected at endoscopy. This relies upon subjective assessment of morphological changes within the excised tissue samples and poor targeting of pre-malignant lesions. Raman spectroscopy offers a number of potential advantages for in vivo assessment of tissue at endoscopy. The performance of a custom built Raman probe as a biopsy targeting tool has been evaluated using excised biopsy material. Multivariate classification models have been used to demonstrate the likely ability of a miniature, confocal, fibre optic Raman probe to be used as an optical biopsy tool at endoscopy to provide spectral information in clinically practicable timescales. This technique could facilitate improved targeting of excisional biopsy with associated clinical benefits.  相似文献   

12.
采用高效液相色谱-紫外-荧光和高效液相色谱-紫外-质谱联用法,证明胃癌患者胃液中存在的荧光物质主要为色氨酸.建立了反相高效液相色谱-双波长同时紫外检测法定量分析胃液中色氨酸和利多卡因的方法.使用Kromasil C18柱(150 mm×4.6 mm, 5 μm),以含0.1%三氟乙酸的甲醇溶液与含0.1%三氟乙酸水溶液为流动相,梯度洗脱分析.色氨酸使用278 nm检测,浓度在0.5~200 mg/L范围内峰面积对浓度的线性相关系数为0.9994;利多卡因使用254 nm检测,浓度在20~5000 mg/L范围内相关系数为0.9992.色氨酸和利多卡因的检出限分别为0.15和5 mg/L;平均加标回收率分别为70.8%~110.4%(色氨酸) 和87.1%~116.2% (利多卡因).利用本方法对38例胃癌患者和48例非胃癌患者的胃液进行测试,两组胃液中色氨酸的含量存在一定的差异.  相似文献   

13.
采用便携式拉曼光谱仪对新鲜乳腺正常组织、良性组织和恶性组织进行检测,通过稳健统计方法对拉曼光谱数据进行分析处理,建立乳腺组织拉曼光谱标准图谱,根据标准图谱特征峰归纳3类组织的主要区别和特征.在3类乳腺组织中,正常组织有明显的脂类特征峰(1078,1297,1437,1653,1746 cm-1),而在良性和恶性组织中则出现了较明显的蛋白特征峰(1259,1530,1650 cm-1),正常、良性和恶性组织的主要区别集中在1340和1534 cm-1处,应归属为蛋白和类胡萝卜素,这一结果并不能由经典统计方法得出.基于稳健统计建立的新鲜乳腺组织拉曼光谱标准图谱为构建数学模型来鉴别乳腺病灶的性质奠定了基础.  相似文献   

14.
Abstract— In this study, we investigate the potential of near-infrared Raman spectroscopy to differentiate cervical precancers from normal tissues, inflammation and metaplasia and to differentially diagnose low-grade and high-grade precancers. Near infrared Raman spectra were measured from 36 biopsies from 18 patients in vitro. Detection algorithms were developed and evaluated relative to histopathologic examination. Algorithms based on empirically selected peak intensities, ratios of peak intensities and a combination of principal component analysis for data reduction and Fisher discriminant analysis for classification were investigated. Spectral peaks were tentatively identified from measured spectra of potential chromophores. Empirically selected normalized intensities can differentiate precancers from other tissues with an average sensitivity and specificity of 88 ± 4% and 92 ± 4%. Ratios of un-normalized intensities can differentiate precancers from other tissues with a sensitivity and specificity of 82% and 88% and high-grade from low-grade lesions with a sensitivity and specificity of 100%. Using multivariate methods, intensities at eight frequencies can be used to differentiate precancers from all other tissues with a sensitivity and specificity of 82% and 92% in an unbiased test. Raman algorithms can potentially separate benign abnormalities such as inflammation and metaplasia from precancers. Comparison of tissue spectra to published and measured chromophore spectra indicate that the most likely primary contributors to the tissue spectra are collagen, nucleic acids, phospholipids and glucose 1-phos-phate. These results suggest that near-infrared Raman spectroscopy can be used for cervical precancer diagnosis and may be able to accurately separate samples with inflammation and metaplasia from precancer.  相似文献   

15.
Abstract— Near-infrared Fourier transform Raman spectroscopy is an analytical, nondestructive technique that provides information about the molecular structure of the investigated sample. The molecular structure of proteins and lipids differs between neoplastic and normal tissues and therefore Raman spectroscopy has been considered promising for the diagnosis of cancer. We aimed to compare the molecular structure of normal skin, benign and malignant skin lesions by the near-infrared Fourier transform Raman spectroscopy. Biopsies were obtained from the following skin lesions: skin tag, dermatofibroma, seborrhoeic keratosis, actinic keratosis, keratoacan-thoma, basal cell carcinoma, squamous cell carcinoma, nevus intradermal, nevus compositus, dysplastic nevus and lentigo maligna. Control skin was harvested from the vicinity of these lesions. In the Raman spectra, the secondary structure of the proteins was reflected by the amide vibrations of peptide bonds. The principal lipid vibrations were twisting and wagging (CH2) and CH stretching vibrations. Histologically distinguishable lesions showed specific combinations of band changes indicating alterations in the protein conformation and in the molecular structure of the lipids. Histogenetically related lesions (actinic keratosis and sqamous cell carcinoma) produced similar but not identical patterns of spectral changes. Because the examined skin lesions produced reproducible and unique spectra, we suggest that Raman spectroscopy will be useful for diagnosis of skin lesions.  相似文献   

16.
《中国化学快报》2021,32(10):3061-3065
Gastric ulcers are one of the most common stomach diseases that often accompanied by inflammation, congestion, edema, scar tissue formation, and pyloric obstruction. Fiberoptic endoscopy and X-ray analysis of the upper GI tract have become the diagnostic procedure of choice for patients. However, conventional diagnosis technology is either invasive or radioactive. Herein, a novel CD-MOF NIR-II fluorophore (GPs-CH1055) was developed. The relative fluorophore intensity was largely consistent at various media and pH buffers, and it can swell into gel particles in solvents and be completely expelled from the gastrointestinal tract without being assimilated. GPs-CH1055 has been further evaluated in vivo, and exhibited strong retention effect on the gastric ulcer sites, bright NIR-II signals with high spatial and temporal resolution. Therefore, GPs-CH1055 shows great promise for realizing real-time gastric ulcer imaging and diagnosis.  相似文献   

17.
This study assessed the diagnostic potential of Raman spectroscopic mapping by evaluating its ability to distinguish between normal brain tissue and the human intracranial tumors gliomas and meningeomas. Seven Raman maps of native specimens were collected ex vivo by a Raman spectrometer with 785 nm excitation coupled to a microscope with a motorized stage. Variations within each Raman map were analyzed by cluster analysis. The dependence of tissue composition on the tissue type in cluster averaged Raman spectra was shown by linear combinations of reference spectra. Normal brain tissue was found to contain higher levels of lipids, intracranial tumors have more hemoglobin and lower lipid to protein ratios, meningeomas contain more collagen with maximum collagen content in normal meninges. One sample was studied without freezing. Whereas tumor regions did not change significantly, spectral changes were observed in the hemoglobin component after snap freezing and thawing to room temperature. The results constitute a basis for subsequent Raman studies to develop classification models for diagnosis of brain tissue.  相似文献   

18.
应用傅里叶变换红外光谱(FTIR)测定了184例胃镜样品,总结不同病变类型组织的光谱特征,并与病理结果进行比较.实验结果表明,由于不同类型病变组织会在其分子组成和结构上发生相应改变,浅表性胃炎、萎缩性胃炎和胃癌组织具有不同的FTIR光谱,可据此进行胃镜样品疾病类型和病变程度的判别.研究结果表明,FTIR技术有望发展成为一种用于胃镜样品无创、快速、准确的在体临床诊断的新方法.  相似文献   

19.
The main bioactive constituents in the standardized Ginkgo biloba leaf extract (EGb 761) are the terpene lactones and flavonoid glycosides. EGb 761’s antioxidant and anti-inflammatory properties have previously been demonstrated. Indomethacin-induced gastric ulcers have a multifactorial etiology and represent a major restriction to its therapeutic utility. The underlying ulcerogenic process involves oxidative and inflammatory biomolecular insults. This study was performed to explore the curative and preventative benefits of EGb 761 in experimentally-induced ulcers. To develop gastric ulcers in mice, indomethacin (40 mg/kg) was administered orally. EGb 761 (200 mg/kg) was given by gavage for 7 days before (preventative) and after (therapeutic) indomethacin administration. The histological alterations and macroscopic mucosal lesions were assessed. In gastric tissue homogenates, malondialdehyde (MDA), reduced glutathione (GSH), nitric oxide (NO), and inflammatory cytokines were measured. The expressions of cyclooxygenase-2 (COX-2), cytokines, and proliferating cell nuclear antigen (PCNA) in the stomach mucosa were also investigated. The ulcer index, histological alterations, gastric oxidants, and inflammatory biomarkers were all significantly increased by indomethacin. In stomach specimens, it increased COX-2 and PCNA expression. EGb 761 treatments, both prophylactic and therapeutic, resulted in significant reductions in ulcer lesions, nitrosative and oxidative damage, and inflammatory markers, along with the lowering of COX-2 and PCNA expressions. Furthermore, in the fight against stomach ulcers, EGb 761 treatment was found to be more efficient than prevention.  相似文献   

20.
There is a growing body of evidence showing that optical spectroscopy has the potential to be a useful in vivo diagnostic tool. Yet, so far there is no definitive cellular and biochemical understanding for the differences seen in the spectra from different tissue categories and disease states. In this study, we examine the use of organotypic raft cultures as an in vitro model of in vivo tissue conditions in an attempt to overcome some of the limitations of previously used methods. Organotypic raft cultures resembling normal and dysplastic epithelial cervical tissue were constructed and grown at an air-liquid interface for 2 weeks. Raman spectra of normal as well as dysplastic raft cultures were measured and compared with in vivo spectra from the corresponding tissue type. Histologic comparisons ensured that the raft cultures had similar structure and morphology to the corresponding intact tissue types. Raman spectra were also acquired from different layers of tissue. Spectral comparisons show that the Raman spectra of the raft cultures are similar to the spectra acquired from the cervix in vivo for both normal and dysplastic tissues. These results show that organotypic raft cultures are an effective and useful tool for the cellular and biochemical analysis of tissue spectroscopy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号