首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Palladium catalysed Hiyama-type coupling of aryl disiloxanes or aryl silanols with aryl halides in the presence of stoichiometric silver(I) oxide and catalytic TBAF allows the rapid preparation of biaryls in moderate to high yield under mild thermal or microwave irradiation conditions.  相似文献   

2.
Palladium(0)‐catalyzed deacylative cross‐coupling of aryl iodides and acyldiazocarbonyl compounds can be achieved at room temperature under mild reaction conditions. The coupling reaction represents a highly efficient and general method for the synthesis of aryldiazocarbonyl compounds, which have found wide and increasing applications as precursors for generating donor/acceptor‐substituted metallocarbenes.  相似文献   

3.
A highly chemo‐ and regioselective intermolecular 1,2‐aryl‐aminoalkylation of alkenes by photoredox/nickel dual catalysis is described here. This three‐component conjunctive cross‐coupling is highlighted by its first application of primary alkyl radicals, which were not compatible in previous reports. The readily prepared α‐silyl amines could be transferred to α‐amino radicals by photo‐induced single electron transfer step. The radical addition/cross‐coupling cascade reaction proceeds under mild, base‐free and redox‐neutral conditions with good functional group tolerance, and importantly, provides an efficient and concise method for the synthesis of structurally valuable α‐aryl substituted γ‐amino acid derivatives motifs.  相似文献   

4.
Activation of C?H bonds and their application in cross coupling chemistry has received a wider interest in recent years. The conventional strategy in cross coupling reaction involves the pre‐functionalization step of coupling reactants such as organic halides, pseudo‐halides and organometallic reagents. The C?H activation facilitates a simple and straight forward approach devoid of pre‐functionalization step. This approach also addresses the environmental and economical issues involved in several chemical reactions. In this account, we have reported C?H bond activation of small organic molecules, for example, formamide C?H bond can be activated and coupled with β‐dicarbonyl or 2‐carbonyl substituted phenols under oxidative conditions to yield carbamates using inexpensive copper catalysts. Phenyl carbamates were successfully synthesized in moderate to good yields by cross dehydrogenative coupling (CDC) of phenols with formamides using copper catalysts in presence of a ligand. We have also prepared unsymmetrical urea derivatives by oxidative cross coupling of formamides with amines using copper catalysts. Synthesis of N,N‐dimethyl substituted amides, 5‐substituted‐γ‐lactams and α‐acyloxy ethers was carried out from carboxylic acids using recyclable CuO nanoparticles. Copper nanoparticles afforded N‐aryl‐γ‐amino‐γ‐lactams by oxidative coupling of aromatic amines with 2‐pyrrolidinone. Reusable transition metal HT‐derived oxide catalyst was used for the synthesis of N,N‐dimethyl substituted amides by the oxidative cross‐coupling of carboxylic acids and substituted benzaldehydes. Overview of our work in this area is summarized.  相似文献   

5.
The transition‐metal‐catalyzed amination of aryl halides has been the most powerful method for the formation of aryl amines over the past decades. Phenols are regarded as ideal alternatives to aryl halides as coupling partners in cross‐couplings. An efficient palladium‐catalyzed formal cross‐coupling of phenols with various amines and anilines has now been developed. A variety of substituted phenols were compatible with the standard reaction conditions. Secondary and tertiary aryl amines could thus be synthesized in moderate to excellent yields.  相似文献   

6.
The synthesis of complex alkyl boronic esters through conjunctive cross‐coupling of vinyl boronic esters with carboxylic acids and aryl iodides is described. The reaction proceeds under mild metallaphotoredox conditions and involves an unprecedented decarboxylative radical addition/cross‐coupling cascade of vinyl boronic esters. Excellent functional‐group tolerance is displayed, and application of a range of carboxylic acids, including secondary α‐amino acids, and aryl iodides provides efficient access to highly functionalized alkyl boronic esters. The decarboxylative conjunctive cross‐coupling was also applied to the synthesis of sedum alkaloids.  相似文献   

7.
Whereas aryl(trialkyl)silanes are considered to be ideal organometallic reagents for cross‐coupling reactions owing to their stability, low toxicity, solubility, and easy accessibility, they are generally inert under typical cross‐coupling conditions. Disclosed herein is a palladium/copper catalytic system that enables the cross‐coupling of trimethyl, triethyl, tert‐butyldimethyl, and triisopropyl aryl silanes with aryl bromides. This process is applicable to the sequential C?H and C?Si bond arylation of thiophenes and the synthesis of poly(thiophene–fluorene)s.  相似文献   

8.
Copper‐catalyzed Suzuki–Miyaura‐type cross‐coupling and carboboration processes are reported. The cross‐couplings function well with a variety of substituted aryl iodides and aryl boronic esters and allows for orthogonal reactivity compared to palladium‐catalyzed processes. The carboboration method includes both alkynes and allenes and provides access to highly substituted and stereodefined vinyl boronic esters. The alkyne carboboration method is highlighted in the simple one‐pot synthesis of Tamoxifen.  相似文献   

9.
1,3‐Disubstituted bicyclo[1.1.1]pentanes (BCPs) are important motifs in drug design as surrogates for p‐substituted arenes and alkynes. Access to all‐carbon disubstituted BCPs via cross‐coupling has to date been limited to use of the BCP as the organometallic component, which restricts scope due to the harsh conditions typically required for the synthesis of metallated BCPs. Here we report a general method to access 1,3‐C‐disubstituted BCPs from 1‐iodo‐bicyclo[1.1.1]pentanes (iodo‐BCPs) by direct iron‐catalyzed cross‐coupling with aryl and heteroaryl Grignard reagents. This chemistry represents the first general use of iodo‐BCPs as electrophiles in cross‐coupling, and the first Kumada coupling of tertiary iodides. Benefiting from short reaction times, mild conditions, and broad scope of the coupling partners, it enables the synthesis of a wide range of 1,3‐C‐disubstituted BCPs including various drug analogues.  相似文献   

10.
A convenient synthetic pathway enabling D ‐glucal and D ‐galactal pinacol boronates to be prepared in good isolated yields was achieved. Both pinacol boronates were tested in a series of cross‐coupling reactions under Suzuki–Miyaura cross‐coupling conditions to obtain the corresponding aryl, heteroaryl, and alkenyl derivatives in high isolated yields. This methodology was applied to the formal synthesis of the glucopyranoside moiety of papulacandin D and the first total synthesis of bergenin.  相似文献   

11.
The Hiyama cross‐coupling reaction is a powerful method for carbon–carbon bond formation. To date, the substrate scope of this reaction has predominantly been limited to sp2–sp2 coupling reactions. Herein, the palladium‐catalysed Hiyama type cross‐coupling of vinyldisiloxanes with benzylic and allylic bromides, chlorides, tosylates and mesylates is reported. A wide variety of functional groups were tolerated, and the synthetic utility of the methodology was exemplified through the efficient total synthesis of the cytotoxic natural product bussealin A. In addition, the antiproliferative ability of bussealin A was evaluated in two cancer‐cell lines.  相似文献   

12.
The synthetic aspects of several reactions from the multifaceted chemistry of Fischer carbene complexes are examined. Their benzannulation reactions with acetylenes are utilized in the synthesis of anthracyclinones via two approaches which differ by beginning at opposite ends of the molecule with either an aryl or an alkenyl substituted chromium carbene complex. The latter has been employed in a formal synthesis of daunomycinone. The Diels-Alder reactions of ,β-acetylenic chromium carbene complexes provide for a facile entry into substituted cyclohexenyl chromium carbene complexes that are subsequently employed in benzannulation reactions. These tandem cycloaddition/annulation reactions are incorporated into model studies for the synthesis of anthracyclinones and wentilactone A. Their potential is also demonstrated for coupling to yet a third reaction of organochromium compounds ; aromatic nucleophilic substitutions on arene chromium tricarbonyl complexes. The annulations of β,β-disubstituted alkenyl complexes provides for a regio- and stereoselective synthesis of 2,4-cyclohexadienones under neutral conditions at near ambient temperatures.  相似文献   

13.
This study details Ni-catalyzed cross coupling of aryl Grignard reagents with aryl halides in toluene, a nonpolar solvent with a high boiling point. The reaction was applied for the synthesis of various biaryls in good yields without the introduction of a large steric ligand. The Kumada-Tamao-Corriu(KTC) reaction in toluene was then successfully modified to proceed under neat conditions for the efficient syntheses of symmetrical biaryls, particularly in large-scale preparations. Unactivated aryl chlorides show higher reactivity than aryl bromides, particularly under neat conditions. Mechanistic investigations suggest a radical procedure for the catalytic cycle, and the origin of the radical intermediates being aryl halides.  相似文献   

14.
The synthesis of a series of [(IPr)Pd(R‐acac)Cl] precatalysts (acac=acetylacetonato; IPr=1,3‐bis(2,6‐diisopropylphenyl)imidazol‐2‐ylidene), where the acac ligand on palladium has been systematically modified through terminal substitution, is reported. The following substituted acac ligands are employed in this study: dibenzoylmethanato (dbm), benzoylacetonato (bac), tetramethylheptanedionato (tmhd), and hexafluoroacetylacetonato (hfac). Full spectroscopic characterization of the new complexes is provided along with X‐ray studies for three of these. Investigation of their catalytic activity in cross‐coupling is also presented through a comparative study in an aryl amination reaction. The catalytic results show a strong correlation between the increased steric bulk of the acac substituents and an increased activation rate of the precatalyst, going from the acac to the tmhd ligand. This observation, along with the inertness of the hfac compound, seems to support our previous proposal for the activation mechanism of these complexes under cross‐coupling conditions.  相似文献   

15.
This work emphasizes the synthesis of substituted vinyl arenes by reductive coupling of aryl halides with vinyl bromides under mild and easy‐to‐operate nickel‐catalyzed reaction conditions. A broad range of aryl halides, including heteroaromatics, and vinyl bromides were employed to yielding products in moderate to excellent yields with high functional‐group tolerance. The nickel‐catalytic system displays good chemoselectivity between the two C(sp2)‐halide coupling partners, thus demonstrating a mechanistic pathway distinct from other stepwise protocols.  相似文献   

16.
The Catellani reaction is known as a powerful strategy for the expeditious synthesis of highly substituted arenes and benzo‐fused rings, which are usually difficult to access through traditional cross‐coupling strategies. It utilizes the synergistic interplay of palladium and norbornene catalysis to facilitate sequential ortho C?H functionalization and ipso termination of aryl halides in a single operation. In classical Catellani‐type reactions, aryl halides are mainly used as the substrates, and a Pd0 catalyst is required to initiate the reaction. Nevertheless, recent advances showcase that Catellani‐type reactions can also be initiated by a PdII catalyst with different starting materials instead of aryl halides via different reaction mechanisms and under different conditions. This emerging concept of PdII/norbornene cooperative catalysis has significantly advanced Catellani‐type reactions, thus enabling future developments of this field. In this Minireview, PdII‐initiated Catellani‐type reactions and their application in the synthesis of bioactive molecules are summarized.  相似文献   

17.
Triazene‐substituted arylboronic esters were prepared readily from the corresponding aryl magnesium derivatives and shown to function as a new class of donor–acceptor‐substituted coupling reagents. The selective functionalization of these aromatic derivatives led to a wide variety of terphenyl derivatives in which the original bifunctional unit (often further substituted with another functional group) formed the central aromatic ring. The functionalized terphenyl derivatives were formed in two efficient cross‐coupling steps from the triazene‐substituted boronic esters: Suzuki cross‐coupling with an aryl halide was followed by BF3?OEt2‐induced palladium‐catalyzed coupling of the diazonium salt generated in situ from the triazene with an arylboronic acid.  相似文献   

18.
A rhodium(III)‐catalyzed carboxylic acid directed decarboxylative C? H/C? H cross‐coupling of carboxylic acids with thiophenes has been developed. With a slight adjustment of the reaction conditions based on the nature of the substrates, aryl carboxylic acids with a variety of substituents could serve as suitable coupling partners, and a broad variety of functional groups were tolerated. This method provides straightforward access to biaryl scaffolds with diverse substitution patterns, many of which have conventionally been synthesized through lengthy synthetic sequences. An illustrative example is the one‐step gram‐scale synthesis of a biologically active 3,5‐substituted 2‐arylthiophene by way of the current method.  相似文献   

19.
A rhodium(III)‐catalyzed carboxylic acid directed decarboxylative C H/C H cross‐coupling of carboxylic acids with thiophenes has been developed. With a slight adjustment of the reaction conditions based on the nature of the substrates, aryl carboxylic acids with a variety of substituents could serve as suitable coupling partners, and a broad variety of functional groups were tolerated. This method provides straightforward access to biaryl scaffolds with diverse substitution patterns, many of which have conventionally been synthesized through lengthy synthetic sequences. An illustrative example is the one‐step gram‐scale synthesis of a biologically active 3,5‐substituted 2‐arylthiophene by way of the current method.  相似文献   

20.
We report an efficient means of sp2–sp3 cross coupling for a variety of terminal monosubstituted olefins with aryl electrophiles using Pd and CuH catalysis. In addition to its applicability to a range of aryl bromide substrates, this process was also suitable for electron‐deficient aryl chlorides, furnishing higher yields than the corresponding aryl bromides in these cases. The optimized protocol does not require the use of a glovebox and employs air‐stable Cu and Pd complexes as precatalysts. A reaction on 10 mmol scale further highlighted the practical utility of this protocol. Employing a similar protocol, a series of cyclic alkenes were also examined. Cyclopentene was shown to undergo efficient coupling under these conditions. Lastly, deuterium‐labeling studies indicate that deuterium scrambling does not take place in this sp2‐sp3 cross coupling, implying that β‐hydride elimination is not a significant process in this transformation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号