首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The anomeric effect has been studied for a variety of compounds using the MM4 force field, and also using MP2/6-311++G(2d,2p) ab initio calculations and experimental data for reference purposes. Geometries and energies, including conformational, rotational barriers, and heats of formation were examined. Overall, the agreement of MM4 with the experimental and ab initio data is good, and significantly better than the agreement obtained with the MM3 force field. The anomeric effect is represented in MM4 by various explicit terms in the force constant matrix. The bond length changes are accounted for with torsion-stretch elements. The angle changes are accounted for with torsion-bend elements. The energies are taken into account with a number of torsional terms in the usual way. A torsion-torsion interaction is also of some importance. With all of these elements included in the calculation, the MM4 results now appear to be adequately accurate. The heats of formation were examined for a total of 12 anomeric compounds, and the experimental values were fit by MM4 with an RMS error of 0.42 kcal/mol.  相似文献   

2.
A mechanism for the enhanced splitting detected in the millimeter-wave rotational spectra of the first excited S-S stretching state of HSSH (disulfane) has been studied. The mechanism, which involves a potential coupling between the first excited S-S stretching state and excited torsional states, has been investigated in part by the use of ab initio theory. Based on an ab initio potential surface, coupling matrix elements have been calculated, and the amount of splitting has then been estimated by second-order perturbation theory. The result, while not in quantitative agreement with the measured splitting, lends plausibility to the assumed mechanism.  相似文献   

3.
The electronic coupling matrix elements attending the charge separation reactions of a C-shaped molecule containing an excited pyrene as the electron acceptor and a dimethylaniline as the donor are determined in aromatic, ether, and ester solvents. Band shape analyses of the charge-transfer emission spectra (CT --> S(0)) provide values of the reaction free energy, the solvent reorganization energy, and the vibrational reorganization energy in each solvent. The free energy for charge separation in benzene and toluene solvents is independently determined from the excited state equilibrium established between the locally excited pyrene S(1) state and the charge-transfer state. Analyses of the charge separation kinetics using the spectroscopically determined reorganization energies and reaction free energies indicate that the electronic coupling is solvent independent, despite the presence of a cleft between the donor and acceptor. Hence, solvent molecules are not involved in the coupling pathway. The orientations of the donor and acceptor units, relative to the spacer, are not rigidly constrained, and their torsional motions decrease solvent access to the cleft. Generalized Mulliken-Hush calculations show that rotation of the pyrene group about the bond connecting it to the spacer greatly modulates the magnitude of through-space coupling between the S(1) and CT states. The relationship between the torsional dynamics and the electron-transfer dynamics is discussed.  相似文献   

4.
Rotationally resolved fluorescence excitation spectra of the 0(0)(0) bands of the S1<--S0 electronic transitions of 2- and 5-methylpyrimidine (2MP and 5MP, respectively) have been observed and assigned. Both spectra were found to contain two sets of rotational lines, one associated with the sigma=0 torsional level and the other associated with the sigma=+/-1 torsional level of the attached methyl group. Analyses of their structure using the appropriate torsion-rotation Hamiltonian yields the methyl group torsional barriers of V6'=1.56 and V6'=8.28 cm(-1) in 2MP and V6'=4.11 and V6'=58.88 cm(-1) in 5MP. Many of the lines in both spectra are fragmented by couplings with lower lying triplet states. Analyses of some of these perturbations yield approximate values of the intersystem crossing matrix elements, from which it is concluded that the sigma=+/-1 torsional levels of the S1 state are significantly more strongly coupled to the T1 state than the sigma=0 torsional levels.  相似文献   

5.
The ability of different correlation functions to shed some light onto the conformational dynamics of an amorphous polymer has been analyzed. The study has been performed on a polyethylene model polymer, which has been simulated at decreasing temperatures towards its glass transition, via the molecular dynamics technique. Three rotational isomers are allowed by the considered torsional potential. The correlation times associated with the evaluated transition rates have shown to be Arrhenius in nature, with activation energies resulting basically from internal rotation barriers. Overall torsional autocorrelation functions have been calculated. We have observed that they are dominated by slow events. Alternatively, a set of torsional autocorrelation functions associated with every isomeric state has been evaluated. Stretched exponential fits lead to correlation times that display Vogel-Fulcher temperature dependence.  相似文献   

6.
The C-N stretching infrared fundamental of CH(3)NH(2) has been investigated by high-resolution laser sideband and Fourier transform synchrotron spectroscopy to explore the energy level structure and to look for possible interactions with high-lying torsional levels of the ground state and other vibrational modes. The spectrum is complicated by two coupled large-amplitude motions in the molecule, the CH(3) torsion and the NH(2) inversion, which lead to rich spectral structure with a wide range of energy level splittings and relative line intensities. Numerous sub-bands have been assigned for K values ranging up to 12 for the stronger a inversion species for the v(t) = 0 torsional state, along with many of the weaker sub-bands of the s species. The C-N stretching sub-state origins have been determined by fitting the upper-state term values to J(J + 1) power-series expansions. For comparison with the ground-state behaviour, both ground and C-N stretch origins have been fitted to a phenomenological Fourier series model that produces an interesting pattern with the differing periodicities of the torsional and inversion energies. The amplitude of the torsional energy oscillation increases substantially for the C-N stretch, while the amplitude of the inversion energy oscillation is relatively unchanged. Independent inertial scale factors ρ were fitted for the torsion and the inversion and differ significantly in the upper state. The C-N stretching vibrational energy is determined to be 1044.817 cm(-1), while the effective upper state B-value is 0.7318 cm(-1). Several anharmonic resonances with v(t) = 4 ground-state levels have been observed and partially characterized. A variety of J-localized level-crossing resonances have also been seen, five of which display forbidden transitions arising from intensity borrowing that allow determination of the interaction coupling constants.  相似文献   

7.
8.
The performance of density functionals and wavefunction methods for describing the thermodynamics and kinetics of hydride reductions of 2-substituted cyclohexanones has been evaluated for the first time. A variety of exchange correlation functionals ranging from generalized gradient approximations to double hybrids have been tested and their performance to describe the facial selectivity of hydride reductions of cyclohexanones has been carefully assessed relative to the CCSD(T) method. Among the tested methods, an approach in which single-point energy calculations using the double hybrid B2PLYP−D3 functional on ωB97X−D optimized geometries provides the most accurate transition state energies for these kinetically-controlled reactions. Moreover, the role of torsional strain, temperature, solvation, noncovalent interactions on the stereoselectivity of these reductions was elucidated. Our results indicate a prominent role of the substituent on the cis/trans ratios driven by the delicate interplay between torsional strain and dispersion interactions.  相似文献   

9.
Spectra of a bounded diatomic molecule is studied numerically. Shifted Deng–Fan oscillator potential has been used to model the molecule. The accurate five‐point finite difference method has been used to solve the Schrödinger equation for rovibrational motion of the molecule. The energies of the bound states as well as free states of the molecule have been calculated. In addition, radial matrix elements like , n = 1, 2, and 3 have been calculated. These have been used to calculate the ‐pole static polarizabilities. The variation of bound state energies, matrix elements and ‐pole static polarizabilities with the boundary radius has also been studied. The Stark effect in case of this bounded system has also been investigated.  相似文献   

10.
The matrix elements of the spin-free Hamiltonian between two atomic configuration state functions (CSF 'S ) in the LS coupling scheme are expressed in terms of the atomic integrals Fk's and Gk's. Using these general expressions, the matrix elements have been obtained for all the atomic configurations with three valence electrons that have not been solved so far by earlier methods. The scope for applying this new approach to obtain the Auger line energies and the promotion energies of metals that involve more than two partially filled shells is indicated. The energy expressions for some of the relevant configurations are tabulated.  相似文献   

11.
We present calculations for various properties of the ground and excited states of several arylamine-substituted acridinium ion systems that have been studied experimentally. Using ab initio and semiempirical quantum mechanical methods together with the generalized Mulliken-Hush (GMH) model, we examine the excitation energies, dipole moment shifts, and electronic coupling elements for the vertical charge shift (CSh) processes in these systems. We also examine solvent effects on these properties using a dielectric continuum reaction field model. The results are in generally good agreement with available experimental results and indicate that there is strong electronic coupling in these systems over a wide range of torsional angles. Nevetheless, the initial and final cationic states remain reasonably well-localized over this range, and thus TICT state formation is unlikely in these systems. Finally, a version of the GMH model based on Koopmans' Theorem is developed and found to yield coupling elements generally within a factor of 2 of the many-electron GMH for a sample acridinium system, but with overestimated adiabatic and diabatic dipole moment differences.  相似文献   

12.
Propagator methods provide a direct approach to energies and transition moments for (generalized) electronic excitations from the ground state, but they do not usually allow one to determine excited state wave functions and properties. Using a specific intermediate state representation (ISR) concept, we here show how this restriction can be overcome in the case of the algebraic-diagrammatic construction (ADC) propagator approach. In the ISR reformulation of the theory the basic ADC secular matrix is written as a representation of the Hamiltonian (or the shifted Hamiltonian) in terms of explicitly constructable states, referred to as intermediate (or ADC) states. Similar intermediate state representations can be derived for operators other than the Hamiltonian. Together with the ADC eigenvectors, the intermediate states give rise to an explicit formulation of the excited wave functions and allow one to calculate physical properties of excited states as well as transition moments for transitions between different excited states. As for the ground-state excitation energies and transition moments, the ADC excited state properties are size consistent so that the theory is suitable for applications to large systems. The established hierarchy of higher-order [ADC(n)] approximations, corresponding to systematic truncations of the IS configuration space and the perturbation-theoretical expansions of the ISR matrix elements, can readily be extended to the excited state properties. Explicit ISR matrix elements for arbitrary one-particle operators have been derived and coded at the second-order [ADC(2)] level of theory. As a first computational test of the method we have carried out ADC(2) calculations for singlet and triplet excited state dipole moments in H(2)O and HF, where comparison to full CI results can be made. The potential of the ADC(2) method is further demonstrated in an exploratory study of the excitation energies and dipole moments of the low-lying excited states of paranitroaniline. We find that four triplet states, T1-T4, and two singlet states, S1 and S2, lie (vertically) below the prominent charge transfer (CT) excitation, S3. The dipole moment of the S3 state (17.0D) is distinctly larger than that of the corresponding T3 triplet state (11.7D).  相似文献   

13.
Time-dependent density functional theory (TD-DFT) in the adiabatic formulation exhibits known failures when applied to predicting excitation energies. One of them is the lack of the doubly excited configurations. On the other hand, the time-dependent theory based on a one-electron reduced density matrix functional (time-dependent density matrix functional theory, TD-DMFT) has proven accurate in determining single and double excitations of H(2) molecule if the exact functional is employed in the adiabatic approximation. We propose a new approach for computing excited state energies that relies on functionals of electron density and one-electron reduced density matrix, where the latter is applied in the long-range region of electron-electron interactions. A similar approach has been recently successfully employed in predicting ground state potential energy curves of diatomic molecules even in the dissociation limit, where static correlation effects are dominating. In the paper, a time-dependent functional theory based on the range-separation of electronic interaction operator is rigorously formulated. To turn the approach into a practical scheme the adiabatic approximation is proposed for the short- and long-range components of the coupling matrix present in the linear response equations. In the end, the problem of finding excitation energies is turned into an eigenproblem for a symmetric matrix. Assignment of obtained excitations is discussed and it is shown how to identify double excitations from the analysis of approximate transition density matrix elements. The proposed method used with the short-range local density approximation (srLDA) and the long-range Buijse-Baerends density matrix functional (lrBB) is applied to H(2) molecule (at equilibrium geometry and in the dissociation limit) and to Be atom. The method accounts for double excitations in the investigated systems but, unfortunately, the accuracy of some of them is poor. The quality of the other excitations is in general much better than that offered by TD-DFT-LDA or TD-DMFT-BB approximations if the range-separation parameter is properly chosen. The latter remains an open problem.  相似文献   

14.
We compare a new class of photoionization matrix element zeros, which we will call relativistic high-energy zeros (RHEZ), occurring at energies on the order mc2, to three well-studied classes of zeros, which include Cooper minima, point Coulomb relativistic zeros (PCRZ) and higher energy nonrelativistic Coulomb zeros (HENRCZ). RHEZ differ from the other three types of zeros in several ways. For example, the position of the zero with respect to photon energy in dipole RHEZ matrix elements is completely independent of n, Z, the central potential V, and retardation; has a simple dependence on the bound state l quantum number. Despite the fact that RHEZ occur at such high energies the dipole RHEZ do have some physical consequences.  相似文献   

15.
The laser induced fluorescence excitation and single vibronic excitation dispersed fluorescence spectra have been studied for supersonic jet cooled 1-methyl-2(1h)-pyridone. The methyl torsional bands and some low frequency vibrational transitions were assigned for both ground and excited states. The torsional parameters V(3)=244 cm(-1) and V(6)=15 cm(-1) for the ground state and V(3)=164 cm(-1) and V(6)=40 cm(-1) for the excited state were obtained. To get the insight into the methyl torsional barrier, ab initio calculations were performed and compared with the experimental results. Origin of potential barrier was traced by partitioning the barrier energy into changes in bond-antibond interaction, structural, and steric energies accompanying methyl rotation using natural bond orbital analysis. The role of local interactions in ascertaining the barrier potential reveals that its nature cannot be understood without considering the molecular flexing. The hyperconjugation between CHsigma(*) and ring pi(*) observed in lowest unoccupied molecular orbital (LUMO) stabilizes the methyl group conformer that undergoes a 60 degrees rotation in the excited state with respect to that of the ground state, and it is the change in LUMO that plays important role in the excited state barrier formation.  相似文献   

16.
The tendency of C? O bond lengths to change as a function of the torsional angles at an acetal carbon has been included in a new version of the molecular mechanics program MM 2(82), based on the observed behavior of molecules of this class as indicated by ab initio calculations and experimental structural data. The experimental geometries and energies are reasonably well reproduced.  相似文献   

17.
聚醚醚酮及其碳纤维复合材料——恒温结晶动力学的研究   总被引:1,自引:1,他引:1  
本文研究了聚醚醚酮(PEEK)和以PEEK树脂为基体的碳纤维复合材料(APC-2)在恒温条件下的结晶行为。采用差示扫描量热仪(DSC)测定从熔体和橡胶体结晶过程中热焓的变化。利用Avrami方程分析了PEEK和APC-2试样的恒温结晶动力学。PEEK从熔体和橡胶体结晶的活化能分别为532.1和531.7KJ/mol,Avrami指数的平均值分别为5.0和3.9;而APC-2则分别为444.2和432.5KJ/mol,3.5和2.3。这些实验结果表明,APC-2试样中碳纤维表面对PEEK树脂基体具有显著的成核作用,能降低其结晶活化能,因而导致PEEK树脂基体结晶速率加快和促进其结晶更加完整。  相似文献   

18.
The inner-sphere reorganization energy of the electron self-exchange of the couple cyclooctatetraene/cyclooctatetraene radical anion has been investigated by quantum mechanical calculations. The more stable Jahn Teller distorted B2g conformation of the radical anion has been used in this study. Two different theories have been applied in this first part. The harmonic approximation in the classical Marcus scheme has been modified by using projected force constants, which are obtained from the complete force constant matrix and the geometry changes of the molecule during the ET (introduced by Mikkelsen). A different approach (introduced by Nelsen) combines the different energies of the neutral and radical anion with and without relaxation corresponding to the vertical ionization potential and the vertical electron affinity. The electronic energies of the neutral molecule and the radical anion differ dramatically applying three different levels of quantum mechanical calculations (UAM1, UB3LYP, PMP2 with three different basis sets with and without diffuse functions). Nevertheless the Nelsen method gives almost consistent results for the inner-sphere reorganization energies: 120.1 kJ/mol for semiempirical UAM1 method, 159.3 kJ/mol, 156.4 kJ/mol and 158.3 kJ/mol for density functional UB3LYP/6-31G*, UB3LYP/6-31++G* and UB3LYP/AUG-cc-pVDZ calculations and 192.5 kJ/mol for ab-initio PMP2/6-31G* investigations, respectively. These values are in agreement with earlier experimental work supposing the total reorganization energy to be larger than 38 kcal/mol assuming an electron self-exchange rate of 10(4) M(-1) s(-1). The simple harmonic approximation of Marcus relation has not yet been applied for a molecule like cyclooctatetraene with large torsional geometry changes. Using the projected force constants after scaling, considerably different results for the inner-sphere reorganization energy have been calculated: 738.1 kJ/mol for the UB3LYP/6-31G*, 743.3 kJ/mol for UB3LYP/6-31++G* and 759.1 kJ/mol for UB3LYP/AUG-cc-pVDZ level of theory. Comparison with our concentration dependent EPR experiments are controversial to the earlier experimental results, but the latter supports the assumption that the electron self-exchange occurs in a time scale so that the molecules cannot complete their vibrational motions. Therefore the projected Marcus relation is not valid for cyclooctatetraene/cyclooctatetraene radical anion including a large torsional change during the electron transfer.  相似文献   

19.
Modifications of the optical properties of poly[2-methoxy-5-(2'-ethyl-hexyloxy)-1,4-phenylene vinylene] induced by fluorination of the vinylene units are investigated by means of time dependent density functional theory (TD-DFT) calculations and spectroscopic measurements in solution. The energy of the main absorption peak is blue-shifted by more than 0.8 eV in the fluorinated polymers. TD-DFT excitation energies for non-fluorinated and fluorinated oligomer structures of increasing number of monomers, employing fully relaxed geometries, are compared to the experimental absorption energies of the polymers. We found that the measured large blue-shift induced by the fluorination of the vinylene units is not caused by the electron-withdrawing effect of the fluorine substituents but it is related to a steric effect. The inter-monomer torsional angle of the fluorinated structures increases above 50 degrees , while in the non-fluorinated systems it is below 20 degrees . Further insight into the origin of the large blue-shift of the excitation energies is gained by a detailed analysis of the torsional potentials of non-fluorinated and fluorinated dihydroxystilbene. While for planar geometries the energy gap increases due to fluorination, it decreases for highly distorted geometries. In addition, we found that the torsional potential of dihydroxystilbene is rather flat, meaning that different isomers might, e.g., in the solid state, coexist.  相似文献   

20.
We have studied biphenyl by time-dependent density-functional theory. In particular, we have analyzed the dependence of singlet excitation energies and transition dipoles on the torsional angle between the phenyl groups. The torsional spectrum has been computed quantum mechanically as well as semiclassically in order to understand how this influences the broadening of absorption and luminescence spectra. Our results are in best agreement with supersonic jet spectroscopy data, but also fit astonishingly well to spectra of biphenyl in condensed phase. Furthermore, we compare the torsional and vibrational relaxation and discuss qualitatively the general consequences for poly-para-phenylenes and related conjugated polymers as poly-thiophenes, considering, in particular, how side chains and solvents may affect the optical spectra.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号