首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the present paper similarity solutions for the convective flow induced by buoyancy in a saturated porous medium adjacent to horizontal impermeable surfaces are obtained. The analysis incorporates the variation of permeability from the wall and expressions for boundary layer thickness, local and overall surface heat-flux are obtained. Applications of the results to convective flows in a geothermal reservoir are discussed.  相似文献   

2.
Plane waves in a semi-infinite fluid saturated porous medium   总被引:5,自引:0,他引:5  
The field equations governing the propagation of waves in an incompressible liquid-saturated porous medium are investigated and a general solution is presented. It has been revealed that coupled longitudinal and transverse waves propagate in the porous medium. The propagation of transverse waves in the fluid phase is completely due to the interaction between the solid and fluid phases. The dispersion relationship and attenuation features are discussed. Unlike other investigations, all explicit forms of the arguments are derived. The reflection of the plane harmonic waves at the plane, traction-free boundary, which shows the influence of the dissipation on the velocity, and the attenuation coefficients of the reflected waves is studied. It is of interest that pore pressure is produced in the process of reflection, even in the case of the incidence of transverse waves.  相似文献   

3.
Experimental data on the structure and dynamics of pressure perturbations of moderate intensity in a porous medium saturated with a gassy fluid are obtained and generalized on the basis of a theoretical analysis.Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No. 1, pp, 80–85, January–February, 1992.  相似文献   

4.
Experimental data on the evolution of pressure waves in a consolidated porous medium saturated with a gassy fluid are obtained. These data are generalized on the basis of a theoretical analysis.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 4, pp. 85–92, July–August, 1987.  相似文献   

5.
The onset of buoyancy-driven convection in an initially quiescent ferrofluid saturated horizontal porous layer in the presence of a uniform vertical magnetic field is investigated. The Brinkman-Lapwood extended Darcy equation with fluid viscosity different from effective viscosity is used to describe the flow in the porous medium. The lower boundary of the porous layer is assumed to be rigid-paramagnetic, while the upper paramagnetic boundary is considered to be either rigid or stress-free. The thermal conditions include fixed heat flux at the lower boundary, and a general convective–radiative exchange at the upper boundary, which encompasses fixed temperature and fixed heat flux as particular cases. The resulting eigenvalue problem is solved numerically using the Galerkin technique. It is found that increase in the Biot number Bi, porous parameter σ, viscosity ratio Λ, magnetic susceptibility χ, and decrease in the magnetic number M 1 and non-linearity of magnetization M 3 is to delay the onset of ferroconvection in a porous medium. Further, increase in M 1, M 3, and decrease in χ, Λ, σ and Bi is to decrease the size of convection cells.  相似文献   

6.
A modification to the Forchheimer-Brinkman equation, for the modelling of high speed flow of a compressible fluid in a dense saturated porous medium, is proposed. The modified equation is applied to a flow in which choking can occur.  相似文献   

7.
The present article considers a numerical study of thermal dispersion effect on the non-Darcy natural convection over a vertical flat plate in a fluid saturated porous medium. Forchheimer extension is considered in the flow equations. The coefficient of thermal diffusivity has been assumed to be the sum of molecular diffusivity and the dispersion thermal diffusivity due to mechanical dispersion. The non-dimensional governing equations are solved by the finite element method (FEM) with a Newton–Raphson solver. Numerical results for the details of the stream function, velocity and temperature contours and profiles as well as heat transfer rates in terms of Nusselt number are obtained. The study shows that the increase in thermal dispersion coefficient of the porous medium results in more heat energy to disperse away in the normal direction to the wall. This induces more fluid to flow along the wall, enhancing the heat transfer coefficient particularly near the wall.  相似文献   

8.
This paper concentrates on the unsteady flows of a magnetohydrodynamic (MHD) second grade fluid filling a porous medium. The flow modeling involves modified Darcy's law. Three problems are considered. They are (i) starting flow due to an oscillating edge, (ii) starting flow in a duct of rectangular cross-section oscillating parallel to its length, and (iii) starting flow due to an oscillating pressure gradient. Analytical expressions of velocity field and corresponding tangential stresses are developed. These expressions are found to be significantly affected by the applied magnetic field, permeability of the porous medium and the material parameter of the fluid. Moreover, the influence of pertinent parameters on the flows is delineated and appropriate conclusions are drawn. Finally, a comparison is also made with the existing results in the literature.  相似文献   

9.
Transient non-Darcy free convection between two parallel vertical plates in a fluid saturated porous medium is investigated using the generalized momentum equation proposed by Vafai and Tien. The effects of porous inertia and solid boundary are considered in addition to the Darcy flow resistance. Exact solutions are found for the asymptotic states at small and large times. The large time solutions reveal that the velocity profiles are rather sensitive to the Darcy number Da when Da<1. It has also been found that boundary friction alters the velocity distribution near the wall, considerably. Finite difference calculations have also been carried out to investigate the transient behaviour at the intermediate times in which no similarity solutions are possible. This analytical and numerical study reveals that the transient free convection between the parallel plates may well be described by matching the two distinct asymptotic solutions obtained at small and large times.Nomenclature C empirical constant for the Forchheimer term - f velocity function for the small time solution - F velocity function for the large time solution - g acceleration due to gravity - Gr* micro-scale Grashof number - H a half distance between two infinite plates - K permeability - Nu Nusselt number - Pr Prandtl number - t time - T temperature - u, v Darcian velocity components - x, y Cartesian coordinates - effective thermal diffusivity - coefficient of thermal expansion - porosity - dimensionless time - similarity variable - dimensionless temperature - viscosity - kinematic viscosity - density - the ratio of heat capacities  相似文献   

10.
A technique of the state space approach and the inversion of the Laplace transform method are applied to dimensionless equations of an unsteady one-dimensional boundary-layer flow due to heat and mass transfer through a porous medium saturated with a viscoelastic fluid bounded by an infinite vertical plate in the presence of a uniform magnetic field is described. Complete analytical solutions for the temperature, concentration, velocity, and induced magnetic and electric fields are presented. The inversion of the Laplace transforms is carried out by using a numerical approach. The proposed method is used to solve two problems: boundary-layer flow in a viscoelastic fluid near a vertical wall subjected to the initial conditions of a stepwise temperature and concentration and viscoelastic fluid flow between two vertical walls. The solutions are found to be dependent on the governing parameters including the Prandtl number, the Schmidt number, the Grashof number, reaction rate coefficient, viscoelastic parameter, and permeability of the porous medium. Effects of these major parameters on the transport behavior are investigated methodically, and typical results are illustrated to reveal the tendency of the solutions. Representative results are presented for the velocity, temperature, concentration, and induced magnetic and electric field distributions, as well as the local skin-friction coefficient and the local Nusselt and Sherwood numbers.  相似文献   

11.
Mixed convection flow and heat transfer about an isothermal vertical wall embedded in a fluid saturated porous medium with uniform free stream velocity is considered and the effects of thermal dispersion and viscous dissipation in both aiding and opposing flows are analysed. Similarity solution is not possible due to the inclusion of the viscous dissipation term, series solution is obtained, first and second order effects of dissipation revealed that viscous dissipation lowers the heat transfer rate. Observations also revealed that the thermal dispersion effect enhances the heat transfer rate and the effect of viscous dissipation is observed to increase with increasing values of the dispersion parameter. Received on 21 March 1997  相似文献   

12.
13.
The non-similar problems associated with a non-isothermal vertical flat plate embedded in a fluid-saturated porous medium were considered to assess the performances of the two distinctive boundary layer solution methods, namely, the local similarity solution and the integral method. The results generated from these two approximate solution methods are compared against the results from a two-point finite difference and those based on a Merk-type series expansion. Comparison of the results reveals that both integral and local similarity methods perform excellently. Especially, the accuracy acquired by the local similarity solution is so high that the difference between the results from the local similarity solution and those from the two-point finite difference and local non-similarity solution methods is hardly discernible for the case of monotonic increasing wall temperature.  相似文献   

14.
Non-Darcy flows in saturated porous media with significative boundary and inertia effects are modelled applying the Continuum Theory of Mixtures approach and simulated by discretization of the governing equations by the finite volume method.
Sommario Flussi di tipo ‘Non-Darcy’ in mezzi porosi saturi, con significativi effetti di bordo ed inerziali, vengono modellati applicando l'approccio della Teoria delle Miscele per il Continuo e simulati mediante discretizzazione delle equazioni governanti con il metodo del volume finito.
  相似文献   

15.
In this paper, the temporal development of small disturbances in a pressure‐driven fluid flow through a channel filled with a saturated porous medium is investigated. The Brinkman flow model is employed in order to obtain the basic flow velocity distribution. Under normal mode assumption, the linearized governing equations for disturbances yield a fourth‐order eigenvalue problem, which reduces to the well‐known Orr–Sommerfeld equation in some limiting cases solved numerically by a spectral collocation technique with expansions in Chebyshev polynomials. The critical Reynolds number Rec, the critical wave number αc, and the critical wave speed cc are obtained for a wide range of the porous medium shape factor parameter S. It is found that a decrease in porous medium permeability has a stabilizing effect on the fluid flow. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

16.
In this article, analysis is presented to study the effect of Hall current on the rotating flow of a non-Newtonian fluid in a porous medium taking into consideration the modified Darcy's law. The Oldroyd-B fluid model is used to characterize the non-Newtonian fluid behavior. The governing equations for unsteady rotating flow have been modeled in a porous medium. The analysis includes the flows induced by general periodic oscillations and elliptic harmonic oscillations of a plate. The effect of the various emerging parameters is discussed on the velocity distribution. The analytical results are confirmed mathematically by giving comparison with previous studies in the literature. It is observed that the velocity distribution increases with an increase of Hall parameter. The behavior of permeability is similar to that of the Hall parameter.  相似文献   

17.
Local thermal non-equilibrium (LTNE) may have profound effects on the pore pressure and thermal stresses in fluid saturated porous media under transient thermal loads. This work investigates the temperature, pore pressure, and thermal stress distributions in a porous medium subjected to convective cooling/heating on its boundary. The LTNE thermo-poroelasticity equations are solved by means of Laplace transform for two fundamental problems in petroleum engineering and nuclear waste storage applications, i.e., an infinite porous medium containing a cylindrical hole or a spherical cavity subjected to symmetrical thermo-mechanical loads on the cavity boundary. Numerical examples are presented to examine the effects of LTNE under convective cooling/heating conditions on the temperature, pore pressure and thermal stresses around the cavities. The results show that the LTNE effects become more pronounced when the convective heat transfer boundary conditions are employed. For the cylindrical hole problem of a sandstone formation, the thermally induced pore pressure and the magnitude of thermal stresses are significantly higher than the corresponding values in the classical poroelasticity, which is particularly true under convective cooling with moderate Biot numbers. For the spherical cavity problem of a clay medium, the LTNE effect may become significant depending on the boundary conditions employed in the classical theory.  相似文献   

18.
19.
20.
A computational fluid dynamics technique has been used to predict the likely concentration levels along a pipe wall of chemicals injected radially from a nozzle. No published empirical data appear to be available, despite the importance of this subject in protecting pipe walls in the vicinity of the dosing point if the chemicals and pipe materials are incompatible. Validation of predictions is by comparison with experimental data for other parameters related to the flow. Where possible, results have been analyzed and presented in dimensionless form so that the article can act as a more generally useful design guide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号