首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
We describe an exciting opportunity for affinity biosensing using a ratiometric approach to the angular-dependent light scattering from bioactivated and subsequently aggregated noble metal colloids. This new model sensing platform utilizes the changes in particle scattering from very small colloids, which scatter light according to traditional Rayleigh theory, as compared to the changes in scattering observed by much larger colloidal aggregates, formed due to a bioaffinity reaction. These larger aggregates no longer scatter incident light in a Cos(2) theta dependence, as is the case for Rayleigh scattering, but instead scatter light in an increased forward direction as compared to the incident geometry. By subsequently taking the ratio of the scattered intensity at two angles, namely 90 degrees and 140 degrees , relative to the incident light, we can follow the association of biotinylated bovine serum albumin-coated 20 nm gold colloids, cross-linked by additions of streptavidin. This new model system can be potentially applied to many other nanoparticle assays and has many advantages over traditional fluorescence sensing and indeed light-scattering approaches. For example, a single nanoparticle can have the equivalent scattered intensity as 10(5) fluorescing fluorescein molecules substantially increasing detection; the angular distribution of scattered light from noble metal colloids is substantially easier to predict as compared to fluorescence; the scattered light is not quenched by biospecies; the ratiometric measurements described here are not dependent on colloid concentration as are other scattering techniques; and finally, the noble metal colloids are not prone to photodestruction, as is the case with organic fluorophores.  相似文献   

2.
Designing plasmonic hollow colloids with small interior nanogaps would allow structural properties to be exploited that are normally linked to an ensemble of particles but within a single nanoparticle. Now, a synthetic approach for constructing a new class of frame nanostructures is presented. Fine control over the galvanic replacement reaction of Ag nanoprisms with Au precursors gave unprecedented Au particle‐in‐a‐frame nanostructures with well‐defined sub‐2 nm interior nanogaps. The prepared nanostructures exhibited superior performance in applications, such as plasmonic sensing and surface‐enhanced Raman scattering, over their solid nanostructure and nanoframe counterparts. This highlights the benefit of their interior hot spots, which can highly promote and maximize the electric field confinement within a single nanostructure.  相似文献   

3.
Silica colloids were separated by size-exclusion chromatography and monitored by fluorimetric and UV detection. In the former means of detection, silica colloids were visualized by light-scattering. The signal intensity based on the light scattering increased with increasing size of the silica colloids. The maximum intensity was observed at excitation wavelengths around 270–290nm. In UV detection, silica colloids were visualized based on turbidimetry, and the signal intensity also increased with increasing size of the silica colloids and with decreasing detection wavelength. The signal intensities for both light-scattering and turbidimetric detection were a linear function of the concentration of the silica colloids. The detection limit at S/N = 3 for 78-nm colloids was 0.06 ppm for light-scattering detection whereas the LOD was 2.3 ppm for UV detection. Effects of mobile phase conditions and flow rate on resolution and peak shape were examined. Use of phosphate buffer allowed the separation of silica colloids of different sizes in size-exclusion chromatography.  相似文献   

4.
Analysis in a single particle mode of gold colloids in water has been performed by inductively coupled plasma-mass spectrometry (ICP-MS). The signal induced by the flash of ions due to the ionization of a colloid in the plasma torch can be measured for the ions 197Au+ by the mass spectrometer without interferences. The intensity of the MS signal is recorded in time scan. The recorded peak distributions were analysed as a function of the colloid size for five monodisperse colloids (80-250 nm). This study describes the experimental conditions to analyse gold colloids in a single particle mode. The size detection limit is around 25 nm corresponding to 0.15 fg colloids and one particle per ml may be detected during a 1 min time scan within standard procedure.  相似文献   

5.
Understanding the fundamental behavior of chemically anisotropic Janus and patchy particles at fluid interfaces enables utilization of these colloids as solid surfactants for stabilization of emulsions and as building blocks for fabrication of functional and responsive materials. Here, we review recent progress on understanding the combined effects of particle–interface and particle–particle interactions on the surface activity and organization of Janus and patchy particles at fluid interfaces. We also highlight recent developments that harness these fundamental properties for applications in self-assembly and emulsion stabilization, and discuss some of the outstanding questions that warrant future investigation. The progress in the field opens new opportunities to pursue techniques for controlling interfacial rheology, directed motion, and the formulation of novel soft materials.  相似文献   

6.
Clarifying the hidden but intrinsic feature of single nanoparticles by nanoelectrochemistry could help understand its potential for diverse applications. The uncontrolled interface and bandwidth limitation in the electrochemical measurement put the obstacle in single particle collision. Here, we demonstrate a well‐defined 30 nm nanopore electrode with a rapid chemical‐electrochemical fabrication method which provides a high reproducibility in both size and performance. A capacitance‐based detection mechanism is demonstrated to achieve a high current resolution of 0.6 pA ±0.1 pA (RMS) and a high the temporal resolution of 0.01 ms. By utilizing this electrode, the dynamic interactions of every single particle in the mixture could be directly read during the collision process. The collision frequency is two orders of magnitude higher than previous reports, which helps reveal the hidden features of nanoparticles during the complex and multidimensional interaction processes.  相似文献   

7.
Colloidal particles from pure proteins are favorable over composite colloids (usually polymer-based) for applications in drug delivery and biocatalysis. This is due to degradation issue and protein unfolding. Hard templating based on porous CaCO3 cores has been recently adopted for fabrication of pure protein colloids. In comparison to conventional techniques, the templating offers (i) a control over particles size and (ii) mild preparation conditions without any additives, shear forces, and exposure to high temperature or gas-water interface. In this review, the current achievements in CaCO3-based templating of protein colloids are given. The focus is on physicochemical and material properties of the colloids such as stability, mechanical properties, and internal structure. These properties are considered as a function of pH, ionic strength, and protein denaturation degree. Understanding of these basic aspects gives an option to formulate the protein colloids by hard templating achieving desired particle properties that is crucially important for future applications.  相似文献   

8.
The water-soluble Ag/Pt core-shell nanoparticles were prepared by deposition Pt over Ag colloidal seeds with the seed-growth method using K2PtCl4 with trisodium citrate as reduced agent. The Ag:Pt ratio is varied from 9:1 to 1:3 for synthesizing Pt shell layer of different thickness. A remarkable shift and broadening of Ag surface plasmon band around 410 nm was observed. The contrast of TEM images of Ag/Pt colloids has been obtained. Various techniques, such as transmission electron microscopy (TEM), UV-vis absorption and resonance light-scattering spectroscopy were used to characterize nanoparticles. The data of TEM, UV-vis and resonance light-scattering spectrum all confirm formation of Ag/Pt core-shell nanoparticles. Resonance light-scattering and emission spectrum show the Ag and Ag/Pt core-shell nanoparticles have a nonlinear light-scattering characteristic.  相似文献   

9.
Abstract This paper describes a new method for the preparation of silver colloids with a narrow range of particle size to be used in surface-enhanced Raman spectroscopy. Using malachite green as a strongly adsorbing dye, it can be shown that colloids from different preparation batches exhibit the same enhancement factor within an error margin of about 15%. By varying the number of nucleation centers, the particle size can be determined at will. An increase in particle diameter from about 38 to about 76 nm leads to an estimated five-fold increase in surface enhancement.  相似文献   

10.
In the rapidly expanding fields of nanoscience and nanotechnology, there is considerable interest in chiral nanomaterials, which are endowed with unusually strong circular dichroism. In this review, we summarize the principles of organization underlying chiral nanomaterials and generalize the recent advances in the main strategies used to fabricate these nanoparticles for bioscience applications. The creation of chirality from nanoscale building blocks has been investigated both experimentally and theoretically, and the tunability of chirality using external fields, such as light and magnetic fields, has allowed the optical activity of these materials to be controlled and their properties understood. Therefore, the specific recognition and potential applications of chiral materials in bioscience are discussed. The effects of the chirality of nanostructures on biological systems have been exploited to sense and cut molecules, for therapeutic applications, and so on. In the final part of this review, we examine the future perspectives for chiral nanomaterials in bioscience and the challenges posed by them.

In this review, we summarize the principles of fabrication on chiral nanomaterials and generalize the recent achievements for the bioscience applications.  相似文献   

11.
Photochemical formation of colloidal silver, colloidal gold and silver-gold (Ag-Au) composite colloids under mild conditions has been studied. Irradiation of either aqueous AgCIO4 or HAuCI4 solution in the presence of sodium alginate (SA) with 253.7 nm light yielded colloidal silver or gold, whose particle diamter was 10-30 nm or 40-60 nm, respectively. The Ag-Au composite colloids consisting of mixtures of silver and gold domains (particle diameter 30-150 nm) have been prepared and their extinction spectra have been examined on the basis of a conventional Mie theory in combination with an effective medium theory to estimate the optical constants of these colloids. It has been shown that the extinction spectra of the Ag-Au composite colloids are completely different from those of Ag-Au alloy colloids, in that the former have two extinction maxima close to the colloidal extinction bands of pure silver and gold, in contrast to a single extinction maximum of the latter. The importance of natural, high-molecular carboxylic acids such as alginic acid in the photochemical formation of metal colloids and thin films has been stressed.  相似文献   

12.
Cadmium colloids have been prepared by Chemical Liquid Deposition (CLD). The metal is evaporated to yield atoms which are solvated at liquid nitrogen temperature, and upon warming, stable liquid colloids are formed with particle size ranging between 25–100 Å. Zeta potentials were calculated according to the conversion of Hunter and the Hückel equation, for ethanol and dimethyl sulphoxide. UV/VIS measurement of most of the black colloids showed absorption band around 280 nm. For comparison, we prepared CdS colloid with size 400–625 Å. The colloids are stable to oxidation in air and/or oxygen bubbling. The synthesis of colloids and films from Cd with acetone, 2-butanone, ethanol, 2-propanol, 2-methoxyethanol, DMF and DMSO is reported. Transmission Electron Microscopy (TEM) allows us to determine particle size.  相似文献   

13.
The fabrication of SERS-active substrates, which offer high enhancement factors as well as spatially homogeneous distribution of the enhancement, plays an important role in the expansion of surface-enhanced Raman scattering (SERS) spectroscopy to a powerful, quantitative, and noninvasive measurement technique for analytical applications. In this paper, a novel method for the fabrication of SERS-active substrates by laser treatment of 20, 40, and 60 nm thick gold and of 40 nm thick silver films supported on quartz glass is presented. Single 308 nm UV-laser pulses were applied to melt the thin gold and silver films. During the cooling process of the noble metal, particles were formed. The particle size and density were imaged by atomic force microscopy. By varying the fluence, the size of the particles can be controlled. The enhancement factors of the nanostructures were determined by recording self-assembled monolayers of benzenethiol. The intensity of the SERS signal from benzenethiol is correlated to the mean particle size and thus to the fluence. Enhancement factors up to 10(6) with a high reproducibility were reached. Finally we have analyzed the temperature dependence of the SERS effect by recording the intensity of benzenethiol vibrations from 300 to 120 K. The temperature dependence of the SERS effect is discussed with regard to the metal properties.  相似文献   

14.
Gold being the most biocompatible metal nanoparticle has become an important biosynthesized drug to be studied in recent field of bioscience. The fungus Aspergillus fischeri has been isolated from fruit crop and thus exploited for the synthesis process. Synthesized GNPs were characterized by UV–visible spectroscopy showed absorption spectra in the range of 530–550 nm at different concentrations of HAuCl4. At the optimum reaction concentration of 1 mM HAuCl4, absorption peak was obtained at 543 nm. The GNPs have been further characterized by X-ray diffraction, FTIR, DLS and TEM analysis. The DLS graph showed that the particles were monodispersed. The TEM image showed the formation of spherical shaped GNPs in the range of 50 nm which was in accordance of the particle size analysis by DLS. The potential applications of the gold nanoparticles are yet to be explored and thus, we have conducted a time dependent comparative catalytic activity for methylene blue degradation of chemically synthesized and biosynthesized GNPs which showed biosynthesized ones are better catalysts than chemical ones.  相似文献   

15.
John Texter 《Comptes Rendus Chimie》2003,6(11-12):1425-1433
Exciting materials known as photonic band-gap materials have come upon the materials science scene and are being studied by many research groups around the world. These new materials operate on light in a way very analogous to the way semiconductors operate on electrons to produce very fast electronic switching and computing circuits. It is imagined that the successful fabrication of these materials will lead to computing machines operating on light and yielding the ultimate speeds in information processing, as electrons typically move only at about one tenth to one half the speed of light. Such devices will require much less heat dissipation and may lead to further miniaturization of computing circuits. New applications in diverse chemical and biochemical sensing are also emerging from these photonic materials. Separation and filtration materials and diverse mesoporous materials and composites are also being developed that rely on such photonic arrays and assemblies as fabrication templates. Polymer colloids in the size range of tens of nm to tens of microns are key components in such new materials and processes. A major limitation in the production of such new materials and devices is that fabrication of such arrays and assemblies is extremely slow and unsuitable for practical manufacturing. Crystallization of charged colloidal suspensions, annealing of core–shell particle arrays, epitaxial growth of crystals from two–dimensional templates, and annealing of thermoreversible gel particle arrays are being explored to ameliorate these limitations. To cite this article: J. Texter, C. R. Chimie 6 (2003).  相似文献   

16.
A detailed study concerning the size-selective electrochemical preparation of R4N+Br- -stabilized palladium colloids is presented. Such colloids are readily accessible using a simple electrolysis cell in which the sacrificial anode is a commercially available Pd sheet, the surfactant serving as the electrolyte and stabilizer. It is shown that such parameters as solvent polarity, current density, charge flow, distance between electrodes and temperature can be used to control the size of the Pd nanoparticles in the range 1.2-5 nm. Characterization of the Pd colloids has been performed using transmission electron microscopy (TEM), small angle X-ray scattering (SAXS) and X-ray powder diffractometry (XRD) evaluated by Debye-function-analysis (DFA). Possible mechanisms of particle growth are discussed. Experiments directed towards the size-selective electrochemical fabrication of (n-C6H13)4N+Br- -stabilized nickel colloids are likewise described. Finally, a new strategy for preparing bimetallic colloids (e.g., Pt/Pd nanoparticles) electrochemically is presented, based on the use of a preformed colloid (e.g., (n-C8H17)4N+Br- -stabilized Pt particles) and a sacrificial anode (e.g., Pd sheet).  相似文献   

17.
An analytical ultracentrifugation technique for the determination of particle-size distributions is used which applies an ultracentrifuge with a scanning absorption optical system. Radial scans during a sedimentation velocity experiment yield the particle-size distribution. If the particles consist of several defined monodisperse species, we show that for dense inorganic colloids the resolution of the particle-size distribution is in the angström range. This is demonstrated for a Pt colloid (0.4-2 nm) and unstabilized ZnO (4-9 nm) during particle growth. Such highly resolved particle-size distributions show that the analytical ultracentrifuge is an excellent and rapid tool for the study of particle growth mechanisms as no other fractionating analytical technique with almost atomar resolution is known up to now. Some potential applications arising from the applied ultracentrifuge technique are suggested.  相似文献   

18.
In this work, we develop a new method of creating colloidal crystals with cavities for the entrapment and long-term observation of single biomolecules. Colloidal crystals are first fabricated using surface-tension-assisted self-assembly. Surface tension helps to reduce the interparticle distance between dispensed colloids. Subsequently, the colloids are used as a matrix in which single fluorescently tagged molecules can be tracked using fluorescence microscopy. This method has a high efficiency of self-assembly for small volumes (4 microL) of colloidal suspensions (polystyrene colloids with diameters of 1000, 500, 200, and 100 nm) at low concentration (1% w/w). The spatial hindrance effect on the diffusion of molecules and their entrapment is discussed on the basis of fluorescence correlation spectroscopy results from the diffusion of molecules with different hydrodynamic radii in the cavities of colloidal crystals formed from micrometer- to nanometer-sized polystyrene spheres. Single horseradish peroxidase molecules turning over fluorescent products are tracked over a few seconds. This shows that colloidal crystals can be used to test the function of single molecules of enzymes and protein under controlled spatial confinement.  相似文献   

19.
We report nonintrusive optical microscopy measurements of single micrometer-sized silica and polystyrene colloids in inhomogeneous AC electric fields as a function of field amplitude and frequency. By using a Boltzmann inversion of the time-averaged sampling of single particles within inhomogeneous electric fields, we sensitively measure induced dipole-field interactions on the kT energy scale and fN force scale. Measurements are reported for frequencies when the particle polarizability is greater and less than the medium, as well as the crossover between these conditions when dipole-field interactions vanish. For all cases, the measured interactions are well-described by theoretical potentials by fitting a nondimensional induced dipole-field magnitude. While silica dipole-field magnitudes are well-described by existing electrokinetic models, the polystyrene results suggest an anomalously high surface conductance. Sensitive measurements of dipole-field interactions in this work provide a basis to understand dipole-dipole interactions in particle ensembles in the same measurement geometry in part II.  相似文献   

20.
Dielectrophoretic (DEP) force is exerted when a neutral particle is polarized in a non-uniform electric field, and depends on the dielectric properties of the particle and the suspending medium. The integration of DEP and microfluidic systems offers numerous applications for the separation, trapping, assembling, transportation, and characterization of micro/nano particles. This article reviews the applications of DEP forces in microfluidic systems. It presents the theory of dielectrophoresis, different configurations, and the applications of such systems for particle manipulation and device fabrication.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号