首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A series of half‐sandwich ruthenium(II) arene complexes [(η6p‐cymene)RuII(R‐BzTSC)Cl]Cl 1 , 2 , 3 (BzTSC = benzaldehyde thiosemicarbazone and R = H, CH3 and C6H5) have been synthesized and characterized by IR, 1H NMR, UV‐visible, electrospray ionization mass spectrometry and elemental analysis. The single‐crystal structures of 1 and 3 have been determined. The molecular orbitals and electronic absorption spectra of the compounds have been calculated using the DFT and TDDFT methods. The in vitro antiproliferative activities of these complexes have been evaluated against four human cancer cell lines (CNE, H292, SKBR3 and Hey1‐B), and 3 is proved to be the most efficient inhibitor, with IC50 values of 20, 31, 10 and 34 μm , respectively. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

2.
The Os(II) arene ethylenediamine (en) complexes [(eta(6)-biphenyl)Os(en)Cl][Z], Z = BPh(4) (4) and BF(4) (5), are inactive toward A2780 ovarian cancer cells despite 4 being isostructural with an active Ru(II) analogue, 4R. Hydrolysis of 5 occurred 40 times more slowly than 4R. The aqua adduct 5A has a low pK(a) (6.3) compared to that of [(eta(6)-biphenyl)Ru(en)(OH(2))](2+) (7.7) and is therefore largely in the hydroxo form at physiological pH. The rate and extent of reaction of 5 with 9-ethylguanine were also less than those of 4R. We replaced the neutral en ligand by anionic acetylacetonate (acac). The complexes [(eta(6)-arene)Os(acac)Cl], arene = biphenyl (6), benzene (7), and p-cymene (8), adopt piano-stool structures similar to those of the Ru(II) analogues and form weak dimers through intermolecular (arene)C-H...O(acac) H-bonds. Remarkably, these Os(II) acac complexes undergo rapid hydrolysis to produce not only the aqua adduct, [(eta(6)-arene)Os(acac)(OH(2))](+), but also the hydroxo-bridged dimer, [(eta(6)-arene)Os(mu(2)-OH)(3)Os(eta(6)-arene)](+). The pK(a) values for the aqua adducts 6A, 7A, and 8A (7.1, 7.3, and 7.6, respectively) are lower than that for [(eta(6)-p-cymene)Ru(acac)(OH(2))](+) (9.4). Complex 8A rapidly forms adducts with 9-ethylguanine and adenosine, but not with cytidine or thymidine. Despite their reactivity toward nucleobases, complexes 6-8 were inactive toward A549 lung cancer cells. This is attributable to rapid hydrolysis and formation of unreactive hydroxo-bridged dimers which, surprisingly, were the only species present in aqueous solution at biologically relevant concentrations. Hence, the choice of chelating ligand in Os(II) (and Ru(II)) arene complexes can have a dramatic effect on hydrolysis behavior and nucleobase binding and provides a means of tuning the reactivity and the potential for discovery of anticancer complexes.  相似文献   

3.
The dimeric η(6)-hexamethylbenzene ruthenium(II) triazole compounds of formulation [{(η(6)-C(6)Me(6))Ru(N(3)C(2)(CO(2)R)(2))}(2)(μC(2)O(4))] have been synthesized by 1,3-diploar cycloadditions of coordinated azido compound [{(η(6)-C(6)Me(6))Ru(L(1))N(3)}] (1) with substituted acetylene, RO(2)CC(2)CO(2)R via unexpected oxidation of the coordinated ligand to oxalate (where; L(1) = 5-hydroxy-2-(hydroxymethyl)-4-pyrone; R = Me, 3 or Et, 4). In contrast, a similar 1,3-dipolar cycloaddition reaction of [{(η(6)-C(6)Me(6))Ru(L(2))N(3)}] (2) (where; L(2) = tropolone) with acetylene yielded the monomeric triazole compound [(η(6)-C(6)Me(6))Ru(L(2)){N(3)C(2)(CO(2)R)(2)}] (where; R = Me, 5; Et, 6). The compounds were characterized by spectroscopy and the structures of representative compounds 4 and 6 have been determined by single crystal X-ray diffraction. The two ruthenium centres in the compound 4, are linked by a tetra-dentate oxalate group. Both compounds, 4 and 6, crystallized in a triclinic space group P-1.  相似文献   

4.
The synthesis and photophysical properties of novel luminescent ruthenium(II) bipyridyl complexes containing one, two, or six lower rim acid-amide-modified calix[4]arene moieties covalently linked to the bipyridine groups are reported which are designed to coordinate and sense luminescent lanthanide ions. All the Ru-calixarene complexes synthesized in this work are able to coordinate Nd(3+), Eu(3+), and Tb(3+) ions with formation of adducts of variable stoichiometry. The absorbance changes allow the evaluation of association constants whose magnitudes depend on the nature of the complexes as well as on the nature of the lanthanide cation. Lanthanide cation complex formation affects the ruthenium luminescence which is strongly quenched by Nd(3+) ion, moderately quenched by the Eu(3+) ion, and poorly or moderately increased by the Tb(3+) ion. In the case of Nd(3+), the excitation spectra show that (i) the quenching of the Ru luminescence occurs via energy transfer and (ii) the electronic energy of the excited calixarene is not transferred to the Ru(bpy)(3) but to the neodymium cation. In the case of Tb(3+), the adduct's formation leads to an increase of the emission intensities and lifetimes. The reason for this behavior was ascribed to the electric field created around the Ru calix[4]arene complexes by the Tb(3+) ions by comparison with the Gd(3+) ion, which behaves identically and can affect ruthenium luminescence only by its charge. However, especially for compounds 1 and 3, it cannot be excluded that some contribution comes from the decrease of vibrational motions (and nonradiative processes) due to the rigidification of the structure upon Tb(3+) complexation. In the case of Eu(3+), compounds 1, 2, and 4 were quenched by the lanthanide addition but the quenching of the ruthenium luminescence is not accompanied by europium-sensitized emission which suggests that an electron-transfer mechanism is responsible for the quenching. On the contrary, compound 3 exhibits enhanced emission upon addition of Eu(3+) (as nitrate salt); it is suggested that the lack of quenching in the [3.2Eu(3+)] adduct is due to kinetic reasons because the electron-transfer quenching process is thermodynamically allowed.  相似文献   

5.
Stoichiometric and catalytic reaction of Ru(II) phosphine complexes with alkynes, olefins, and enynes are described. The hydride complex RuCl(CO)H(PPh3)3 (1) reacts with the double bond of a cis-enyne whereas it reacts with triple bonds of trans-enynes. Metathesis of vinyl silanes with olefins are catalyzed by 1 where β-Si elimination is the key step. Dimerizations of tBu- and Me3Si-substituted acetylanes into the corresponding butatrienes are catalyzed by Ru(II) active species as studied by isolation of the intermediates. A model reaction for the crucial step of the catalytic cycle, formation of a Ru vinylidene complex from acetylene, has been fully simulated by ab initio-MO calculations.  相似文献   

6.
7.
The aqua adducts of the anticancer complexes [(eta(6)-X)Ru(en)Cl][PF(6)] (X=biphenyl (Bip) 1, X=5,8,9,10-tetrahydroanthracene (THA) 2, X=9,10-dihydroanthracene (DHA) 3; en=ethylenediamime) were separated by HPLC and characterised by mass spectrometry as the products of hydrolysis in water. The X-ray structures of the aqua complexes [(eta(6)-X)Ru(en)Y][PF(6)](n), X=Bip, Y=0.5 H(2)O/0.5 OH, n=1.5 (4), X=THA, Y=0.5 H(2)O/0.5 OH, n=1.5 (5 A), X=THA, Y=H(2)O, n=2 (5 B), and X=DHA, Y=H(2)O, n=2 (6), are reported. In complex 4 there is a large propeller twist of 45 degrees of the pendant phenyl ring with respect to the coordinated phenyl ring. Although the THA ligand in 5 A and 5 B is relatively flat, the DHA ring system in 6 is markedly bent (hinge bend ca. 35 degrees ) as in the chloro complex 3 (41 degrees ). The rates of aquation of 1-3 determined by UV/Vis spectroscopy at various ionic strengths and temperatures (1.23-2.59x10(-3) s(-1) at 298 K, I=0.1 M) are >20x faster than that of cisplatin. The reverse, anation reactions were very rapid on addition of 100 mM NaCl (a similar concentration to that in blood plasma). The aquation and anation reactions were about two times faster for the DHA and THA complexes compared to the biphenyl complex. The hydrolysis reactions appear to occur by an associative pathway. The pK(a) values of the aqua adducts were determined by (1)H NMR spectroscopy as 7.71 for 4, 8.01 for 5 and 7.89 for 6. At physiologically-relevant concentrations (0.5-5 microM) and temperature (310 K), the complexes will exist in blood plasma as >89 % chloro complex, whereas in the cell nucleus significant amounts (45-65 %) of the more reactive aqua adducts would be formed together with smaller amounts of the hydroxo complexes (9-25 %, pH 7.4, [Cl(-)]=4 mM).  相似文献   

8.
The 1.6 [Angstrom] X-ray crystal structure of [(eta(6)-p-cymene)Ru(lysozyme)Cl(2)], the first of a half-sandwich complex of a protein, shows selective ruthenation of Nepsilon of the imidazole ring of His15.  相似文献   

9.
Density functional calculations show that aquation of [Os(eta6-arene)(XY)Cl]n+ complexes is more facile for complexes in which XY=an anionic O,O-chelated ligand compared to a neutral N,N-chelated ligand, and the mechanism more dissociative in character. The O,O-chelated XY=maltolato (mal) [M(eta6-p-cym)(mal)Cl] complexes, in which p-cym=p-cymene, M=OsII (1) and RuII (2), were synthesised and the X-ray crystal structures of 1 and 22 H2O determined. Their hydrolysis rates were rapid (too fast to follow by NMR spectroscopy). The aqua adduct of the OsII complex 1 was 1.6 pKa units more acidic than that of the RuII complex 2. Dynamic NMR studies suggested that O,O-chelate ring opening occurs on a millisecond timescale in coordinating proton-donor solvents, and loss of chelated mal in aqueous solution led to the formation of the hydroxo-bridged dimers [(eta6-p-cym)M(mu-OH)3M(eta6-p-cym)]+. The proportion of this dimer in solutions of the OsII complex 1 increased with dilution and it predominated at micromolar concentrations, even in the presence of 0.1 M NaCl (conditions close to those used for cytotoxicity testing). Although 9-ethylguanine (9-EtG) binds rapidly to Os(II) in 1 and more strongly (log K=4.4) than to RuII in 2 (log K=3.9), the OsII adduct [Os(eta6-p-cym)(mal)(9EtG)]+ was unstable with respect to formation of the hydroxo-bridged dimer at micromolar concentrations. Such insights into the aqueous solution chemistry of metal-arene complexes under biologically relevant conditions will aid the rational design of organometallic anticancer agents.  相似文献   

10.
Two homometallic complexes containing two and three ruthenium polypyridyl units linked by amino acid lysine (Lys) and the related dipeptide (LysLys) were synthesized and their electrochemical, spectroscopic, and electrochemiluminescence (ECL) properties were investigated. The electrochemical and photophysical data indicate that the two metal complexes largely retain the electronic properties of the reference compound for the separate ruthenium moieties in the two bridged complexes, [4-carboxypropyl-4'-methyl-2,2'-bipyridine]bis(2,2'-bipyridine)ruthenium(II) complex. The ECL studies, performed in aqueous media in the presence of tri-n-propylamine as co-reactant, show that the ECL intensity increases by 30% for the dinuclear and trinuclear complexes compared to the reference. Heterogeneous ECL immunoassay studies, performed on larger dendritic complexes containing up to eight ruthenium units, demonstrate that limitations due to the slow diffusion can easily be overcome by means of nanoparticle technology. In this case, the ECL signal is proportional to the number of ruthenium units. Multimetallic systems with several ruthenium centers may, however, undergo nonspecific bonding to streptavidin-coated particles or to antibodies, thereby increasing the background ECL intensity and lowering the sensitivity of the immunoassay.  相似文献   

11.
The new potentially bidentate pyrazole-phosphinite ligands [(3,5-dimethyl-1H-pyrazol-1-yl)methyl diphenylphosphinite] (L1) and [2-(3,5-dimethyl-1H-pyrazol-1-yl)ethyl diphenylphosphinite] (L2) were synthesised and characterised. The reaction of L1 and L2 with the dimeric complexes [Ru(η6-arene)Cl2]2 (arene = p-cymene, benzene) led to the formation of neutral complexes [Ru(η6-arene)Cl2(L)] (L = L1, L2) where the pyrazole-phosphinite ligand is κ1-P coordinated to the metal. The subsequent reaction of these complexes with NaBPh4 or NaBF4 produced the [Ru(η6-p-cymene)Cl(L2)][BPh4] and [Ru(η6-benzene)Cl(L2)][BF4] compounds which contain the pyrazole-phosphinite ligand κ2-P,N bonded to ruthenium. All the complexes were fully characterised by analytical and spectroscopic methods. The structure of the complex [Ru(η6-p-cymene)Cl(L2)][BPh4] was also determined by a X-ray single crystal diffraction study.  相似文献   

12.
13.
The reaction of trans-[RuCl(2)(PPh(3))(3)] (Ph = C(6)H(5)) with 2-thio-1,3-pyrimidine (HTPYM) and 6-thiopurines (TPs) produced mainly crystalline solids that consist of cis,cis,trans-[Ru(PPh(3))(2)(N,S-TPYM)(2)] (1) and cis,cis,trans-[Ru(PPh(3))(2)(N(7),S-TPs)(2)]X(2) (X = Cl(-), CF(3)SO(3)(-)). In the case of TPs, other coordination isomers have never been isolated and reported. Instead, the mother liquor obtained after filtration of 1 produced red single crystals of trans,cis,cis-[Ru(PPh(3))(2)(N,S-TPYM)(2)].2H(3)O(+).2Cl(-) (2.2H(3)O(+).2Cl(-)). Selected ruthenium(II)-thiobase complexes were studied for their structural, reactivity, spectroscopic, redox, and cytotoxic properties. Single crystals of 1 contain thiopyrimidinato anions chelated to the metal center via N and S. The Ru[bond]N bonds are significantly elongated for 1 [2.122(2) and 2.167(2) A] with respect to 2 [2.063(3) A] because of the trans influence from PPh(3). The coordination pseudo-octahedron for 2 is significantly elongated at the apical sites (PPh(3) ligands). Solutions of cis,cis,trans isomers in air are stable for weeks, whereas those of 2 turn green within 24 h, in agreement with the respective redox potentials. cis,cis,trans- and trans,cis,cis-[Ru(PH(3))(2)(N,S-TPYM)(2)], as optimized through the DFT methods at the Becke3LYP level are in good agreement with experimental geometrical parameters (1 and 2), with cis,cis,trans being more stable than trans,cis,cis by 3.88 kcal. The trend is confirmed by molecular modeling based on semiempirical (ZINDO/1) and molecular mechanics (MM) methods. Cytotoxic activity measurements for cis,cis,trans-[Ru(PPh(3))(N-THZ)(N(7),S -H(2)TP)(2)]Cl(2) (4) (THZ = thiazole, H(2)TP = 6-thiopurine) and cis,cis,trans-[Ru(PPh(3))(2)(N(7),S-HTPR)2]Cl(2) (5) (HTPR = 6-thiopurine riboside) against ovarian cancer cells A2780/S gave IC(50) values of 17 +/- 1 and 29 +/- 9 microM, respectively. Furthermore, the spectral analysis of HTPYM, TPs, and their Ru(II) complexes in solution shows that intense absorptions occur in the UVA/vis region of light, whereas standard nucleobases absorb in the UVB region.  相似文献   

14.
We show that the chelating ligand XY in Ru(II) anticancer complexes of the type [Ru(eta6-arene)(XY)Cl]n+ has a major influence on the rate and extent of aquation, the pKa of the aqua adduct, and the rate and selectivity of binding to nucleobases. Replacement of neutral ethylenediamine (en) by anionic acetylacetonate (acac) as the chelating ligand increases the rate and extent of hydrolysis, the pKa of the aqua complex (from 8.25 to 9.41 for arene=p-cymene), and changes the nucleobase specificity. For the complexes containing the hydrogen-bond donor en, there is exclusive binding to N7 of guanine in competitive nucleobase reactions, and in the absence of guanine, binding to cytosine or thymine but not to adenine. In contrast, when XY is the hydrogen-bond acceptor acac, the overall affinity for adenosine (N7 and N1 binding) is comparable to that for guanosine, but there is little binding to cytidine or thymidine.  相似文献   

15.
The ruthenium (II) mixed-ligand complexes cis-[Ru(bpy)2(NCS)2] (I), [Ru(bpy)2(pn)]2+ (II) and [Ru(bpy)2(phen)]2+ (III) (bpy, 2,2′-bipyridine; pn, 1,2-diaminopropane; phen, 1,10-phenanthroline) were subjected to two (for I and II), and three (for III) stepwise, one-electron reductions, and one-electron oxidations (all fully reversible); the products were studied in situ by solution UV—vis-near IR spectroscopy. The first two reductions took place in all cases on separate bpy ligands, while the third reduction of III took place on phen. Bands of the reduced species in the near IR—vis region are observed and assigned to anion radical ligands. Novel features of the LMCT bands of the oxidized species are presented and discussed.  相似文献   

16.
17.
We have investigated the electrochemical, spectroscopic, and electroluminescent properties of a family of diimine complexes of Ru featuring various aliphatic side chains as well as a more extended pi-conjugated system. The performance of solid-state electroluminescent devices fabricated from these complexes using indium tin oxide (ITO) and gold contacts appears to be dominated by ionic space charge effects. Their electroluminescence efficiency was limited by the photoluminescence efficiency of the Ru films and not by charge injection from the contacts. The incorporation of di-tert-butyl side chains on the dipyridyl ligand was found to be the most beneficial substitution in terms of reducing self-quenching of luminescence.  相似文献   

18.
Ru(II) eta6-arene complexes containing p-cymene (p-cym), tetrahydronaphthalene (thn), benzene (bz), or biphenyl (bip), as the arene, phenylazopyridine derivatives (C5H4NN:NC6H5R; R = H (azpy), OH (azpy-OH), NMe2 (azpy-NMe2)) or a phenylazopyrazole derivative (NHC3H2NN:NC6H5NMe2 (azpyz-NMe2)) as N,N-chelating ligands and chloride as a ligand have been synthesized (1-16). The complexes are all intensely colored due to metal-to-ligand charge-transfer Ru 4d6-pi* and intraligand pi -->pi* transitions (eta = 5000-63 700 M-1 cm-1) occurring in the visible region. In the crystal structures of [(eta6-p-cym)Ru(azpy)Cl]PF6 (1), [(eta6-p-cym)Ru(azpy-NMe2)Cl]PF6 (5), and [(eta6-bip)Ru(azpy)Cl]PF6 (4), the relatively long Ru-N(azo) and Ru-(arene-centroid) distances suggest that phenylazopyridine and arene ligands can act as competitive pi-acceptors toward Ru(II) 4d6 electrons. The pKa* values of the pyridine nitrogens of the ligands are low (azpy 2.47, azpy-OH 3.06 and azpy-NMe2 4.60), suggesting that they are weak sigma-donors. This, together with their pi-acceptor behavior, serves to increase the positive charge on ruthenium, and together with the pi-acidic eta6-arene, partially accounts for the slow decomposition of the complexes via hydrolysis and/or arene loss (t(1/2) = 9-21 h for azopyridine complexes, 310 K). The pKa* of the coordinated water in [(eta6-p-cym)Ru(azpyz-NMe2)OH2]2+ (13A) is 4.60, consistent with the increased acidity of the ruthenium center upon coordination to the azo ligand. None of the azpy complexes were cytotoxic toward A2780 human ovarian or A549 human lung cancer cells, but several of the azpy-NMe2, azpy-OH, and azpyz-NMe2 complexes were active (IC50 values 18-88 microM).  相似文献   

19.
20.
New cationic diruthenium complexes of the type [(arene)(2)Ru(2)(SPh)(3)](+), arene being C(6)H(6), p-(i)PrC(6)H(4)Me, C(6)Me(6), C(6)H(5)R, where R = (CH(2))(n)OC(O)C(6)H(4)-p-O(CH(2))(6)CH(3) or (CH(2))(n)OC(O)CH=CHC(6)H(4)-p-OCH(3) and n = 2 or 4, are obtained from the reaction of the corresponding precursor [(arene)RuCl(2)](2) and thiophenol and isolated as their chloride salts. The complexes have been fully characterised by spectroscopic methods and the solid state structure of [(C(6)H(6))(2)Ru(2)(SPh)(3)](+), crystallised as the hexafluorophosphate salt, has been established by single crystal X-ray diffraction. The complexes are highly cytotoxic against human ovarian cancer cells (cell lines A2780 and A2780cisR), with the IC(50) values being in the submicromolar range. In comparison the analogous trishydroxythiophenolato compounds [(arene)(2)Ru(2)(S-p-C(6)H(4)OH)(3)]Cl (IC(50) values around 100 μM) are much less cytotoxic. Thus, it would appear that the increased antiproliferative effect of the arene ruthenium complexes is due to the presence of the phenyl or toluyl substituents at the three thiolato bridges.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号