首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The diffusive gradients in thin film technique (DGT) was used for characterization of South Moravian arable soils (sampling sites Zlín, Tuřany, and Chrlice) amended by sewage sludge in the 1980s. Two types of polyacrylamide diffusive gel with different pore size (APA gels—cross-linked with agarose and RG gels—cross-linked with bis-acrylamide) were employed. The (bio)available parts of Cd, Cu, and Ni and the proportions of inorganically and organically complexed species of these metals were assessed. The degree of metal resupply from the soil solid phase to the soil solution was also determined. Metal concentrations obtained by the DGT technique were lower by almost 4 to 5 orders of magnitude in comparison with those obtained by extraction with aqua regia. DGT concentrations of metals were also lower by approximately 1 to 2 orders of magnitude in comparison with those obtained by extraction with sodium nitrate (commonly used for assessment of the (bio)available part of metals). Results obtained by DGT measurement were expected to be closer to the actual content of available metal species than results obtained by extraction with sodium nitrate. Using RG gels together with APA gels provided resolution of inorganically and organically complexed metal species and their proportional representation. Inorganic metal species (particles smaller than 1 nm) formed a predominant part of assessed metal content in all studied soil samples and horizons. However, there was the exception of the cadmium content in the middle profile of Chrlice sandy soil sample. Ratio R values indicated that resupply of Cd, Cu, and Ni from the solid phase to the soil solution varied for individual soil samples and individual depth profiles. Mobile and labile species of Cd, Cu, and Ni were much more closely related to upper rather than deeper horizons. This observation correlates very well with the mechanical treatment and amendment of the studied soils.  相似文献   

2.
Mason S  Hamon R  Zhang H  Anderson J 《Talanta》2008,74(4):779-787
The effect of potential chemical constraints on the performance of two relatively new soil P testing methods, anion exchange membrane (AEM) and diffusive gradients in thin films (DGT), were evaluated. Exposures to ranges of anion (Cl(-), NO(3)(-), SO(4)(2-) and HCO(3)(-)) concentrations relevant to agricultural soils had minimal effect on P recoveries using DGT. It has also been shown previously that DGT P recoveries are unaffected by varying pH (3-9). In contrast, increasing NO(3)(-) and SO(4)(2-) concentrations in solution reduced the recovery of P using the resin method (anion exchange membrane, AEM) by 24% at 50mgL(-1) NO(3)(-) and by 47% at 12mgL(-1) SO(4)(2-) when the P concentration of the test solution was 2mgL(-1). Phosphorus sorption by the resin decreased with increasing Cl(-) concentrations until there was a 100% decrease at 300mgL(-1) Cl(-) when the P concentration of the test solution was 2mgL(-1) and a 92% reduction at 700mgL(-1) Cl(-) when the P concentration of the test solution was 0.2mgL(-1). There was also a small but significant effect of carbonate species on P sorption to the resin at carbonate concentrations that can occur in agricultural soils. Changing the pH of the solution had minimal effects on the resin P measurements in solutions above pH 4, but below pH 4, resin P measurements decreased dramatically. A poor coefficient of determination for the regression fit between DGT and resin measurements on eight agricultural soils suggested that these two methods are measuring different amounts of P for different soils. Resin P measurements increased significantly, but non-uniformly across soils, when the soil:water ratio was decreased but this did not result in an improved relationship with DGT P. There was a minimal effect on measured P using either Cl(-) or HCO(3)(-) as counter ions on the resin.  相似文献   

3.
An experimental design using passive samplers was set up in our laboratories with the aim of preparing a procedure for the assessment of trace metals bioavailability in freshwater sediments. Trace metal (Cd, Cu, Pb, Ni, and Zn) bioavailability in sediment samples were measured by diffusive gradients in thin films (DGT) devices and compared to those simultaneously extracted (SEM) in 1N HCl with acid-volatile sulfide (AVS). During experiments DGT devices were exposed at various times (from 4 to 336 h) in sediments with different physical and chemical properties and metal content, after equilibration with ambient water (1:2) for 24 h. Trace metal were progressively accumulated in DGT units and after at least 24-48 h metal fluxes became constant. No relation was found between metal available fractions measured by DGTs and total concentrations in sediments or pore waters. On the contrary good relations were found between available metals measured by DGT and metals simultaneously extracted (SEM) in HCl 1N with acid volatile sulfide (AVS).  相似文献   

4.
The penetration of metal complexes into the resin layer of DGT (diffusive gradients in thin films) devices greatly influences the measured metal accumulation, unless the complexes are either totally inert or perfectly labile. Lability criteria to predict the contribution of complexes in DGT measurements are reported. The key role of the resin thickness is highlighted. For complexes that are partially labile to the DGT measurement, their dissociation inside the resin domain is the main source of metal accumulation. This phenomenon explains the practical independence of the lability degree of a complex in a DGT device with respect to the ligand concentration. Transient DGT regimes, reflecting the times required to replenish the gel and resin domains up to the steady-state profile of the complex, are also examined. Low lability complexes (lability degree between 0.1 and 0.2) exhibit the longest transient regimes and therefore require longer deployment times to ensure accurate DGT measurements.  相似文献   

5.
The ferrihydrite-backed DGT (diffusive gradients in thin films), recently developed for arsenic and phosphate measurements was, for the first time, characterized with respect to molybdate, antimonate, vanadate and tungstate determination. Arsenate was included in the characterization to allow comparison with literature data and thus provide quality control of the measurements. In addition to laboratory experiments, field measurements were carried out in a natural stream in northern Sweden affected by mine drainage. It was shown that ferrihydrite-DGT is suitable for simultaneous determination of labile arsenic, molybdate, antimonate, vanadate and tungstate over a wide pH range. Diffusion coefficients were estimated using two different methods; diffusion cell and direct uptake to DGT devices in synthetic solutions. Estimations of the coefficients using the direct uptake method were performed between pH 4 and 8. The results from the two methods agreed well irrespective of pH, except for molybdate and antimonate that showed decreased values at pH 8. Adsorption of the analytes to ferrihydrite gel-discs was rapid at all pH values. However, there was a tendency toward lower adsorption affinity for antimonate compared to the other anions. 100% recovery of accumulated analytes was achieved through complete dissolution of the ferrihydrite adsorbent using 1.4 molL(-1) HNO(3) with 0.1 molL(-1) HF. From field sampling it was concluded that the opportunities for accurate antimonate and molybdate determination decrease at pH≥8.7. DGT-labile concentrations were generally lower than dissolved concentrations. Relatively lower DGT concentrations, compared to dissolved (<0.45 μm), were observed under a period when ferric oxide precipitations were detected on the DGT protective filter.  相似文献   

6.
Docekalová H  Divis P 《Talanta》2005,65(5):1174-1178
The diffusive gradient in thin films (DGT) technique was investigated and used to measure mercury concentration in river water. Mercury ions are covalently bound to amide nitrogen groups of commonly used polyacrylamide, which makes this gel unsuitable as a diffusive medium. In contrast, agarose gel was found as the diffusive gel for mercury measurements. Basic performance tests of agarose DGT verified the applicability of Fick's first law for DGT measurements. Two selective resins, Chelex-100 with iminodiacetic groups and Spheron-Thiol with thiol groups were used. The measured diffusion coefficient in agarose gel was close to that in water. The concentration of mercury in Svitava river measured by DGT with Speron-Thiol resin gel was higher (0.0116 ± 0.0009 μg l−1) than those obtained by Chelex-100 (0.0042 ± 0.0005 μg l−1). Different capture efficiencies of two adsorbents enable to estimate fractions of mercury bonded in different complexes in the river water. The concentrations of mercury found by DGT both Chelex-100 and Speron-Thiol resin gels are much lower than that measured directly in the river water (0.088 ± 0.012 μg l−1). This difference indicates that DGT concerns inorganic ions and labile species only, and that it is not able to include inert organic species and colloids.  相似文献   

7.
ABSTRACT

Guanidinylated carboxymethyl chitosan (GCMCS) was prepared via the guanidinylation of carboxymethyl chitosan (CMCS). A device employing the diffusive gradients for thin films (DGT) technique was made using a GCMCS aqueous solution as the binding agent and a cellulose acetate dialysis membrane (CADM) as the diffusion phase to measure labile Cu2+, Pb2+ and Cd2+ in water. The percentage uptake (U%) values of labile Cu2+, Pb2+ and Cd2+ in a synthetic water sample were almost consistent with the theoretical values at 101.6 ± 2.8%, 104.6 ± 6.1% and 95.9 ± 4.4%, respectively. The optimum pH ranges for the measurement of labile Cu2+, Pb2+ and Cd2+ were 3.0–7.0, 3.0–7.0 and 4.0–8.0, respectively. The ionic strength mainly affected the diffusion of metal ions in the CADM. The diffusion rates decreased with increasing concentrations of NaNO3 solutions. The application of GCMCS-DGT in natural water and industrial wastewater showed that dissolved organic carbon (DOC) only affects metal species, and the accurate determination of labile Cu2+, Pb2+ and Cd2+ can be achieved when the diffusion coefficients of these metal ions in the diffusion phase have been determined. GCMCS is suitable for DGT application as a chelating agent for metal ions.  相似文献   

8.
In situ measurements of copper and zinc using diffusive gradients in thin films (DGT) in two distinct natural water systems were compared to metal speciation assessed by competitive ligand exchange (CLE) and voltammetric measurements. In a dynamic river system, where dissolved metal concentrations vary significantly over short-time periods, DGT technique provided averaged values of the metal concentrations over time. In microcosms, at different total dissolved concentrations of copper and zinc, DGT technique measured a similar fraction as measurements of labile metal performed by voltammetry. The proportion of DGT and voltammetric-labile zinc to dissolved zinc was 61±4% and, respectively, 76±9%. DGT technique was measuring 81±8% of exchangeable copper (by exchange with catechol). These two fractions were similarly influenced by the addition of NTA. In the absence of NTA, copper measured by DGT represented 34±4% of dissolved copper whereas in the presence of NTA, this proportion raised to 57±2%. These measurements were compared to calculations performed with speciation programs using several models for the complexation by humic and fulvic substances, namely Model VI (WHAM), NICA-Donnan and SHM. The predicted speciation by these three models was similar. The prediction of free zinc ion and labile zinc concentrations were in agreement with experimental data. Calculated concentrations of free copper ion were overestimated because these models are not considering strong specific copper-binding ligands probably present in natural water.  相似文献   

9.
10.
The diffusive gradient in the thin films (DGT) technique was tested to measure dissolved mercury (Hg) both in laboratory aqueous solutions and in situ in river water. For this purpose, a commercial ready-to-use and specific-for-Hg DGT device was used. Each sampler consisted of a filter membrane-agarose gel as the diffusive layer and a Spheron-Thiol resin in polyacrylamide gel as the binding agent. Basic performance assays at the laboratory with this type of DGT unit confirmed the applicability of Fick's first law for DGT measurements. The diffusion coefficient of MeHg in the agarose diffusive gel was 8.50?×?10?6?cm2 s?1 at 25°C. Several field studies were also carried out in two different rivers of the Ebro River basin (NE Spain) affected by Hg wastes released by the chlor-alkali industry. Hg concentrations determined by DGT were generally much lower than the results obtained through direct measurements of the river water. In addition, the results of a time series experiment also performed in the field show that the amount of Hg accumulated in the resin does not increase at all with the exposure time. This may be explained by the underestimation of the truly dissolved Hg fraction due to the formation of a biofilm layer on the surface of the samplers, thus clogging the filter and preventing Hg species from diffusing through it. Consequently, it was demonstrated that the DGT technique presents important limitations for measuring Hg in polluted rivers characterised by a high biomass load (eutrophic), whereas its performance was demonstrated to be correct in oligotrophic waters.  相似文献   

11.
This work investigated the application of diffusive gradients in thin films technique (DGT) to uranium speciation measurements in natural water. Two binding phases were examined, a commercially available affinity membrane, Whatman DE 81 (DE 81), with amino binding functional groups and the conventionally used Chelex 100 beads imbedded polyacrylamide hydrogel (Chelex) with iminodiacetate functional groups. The DGT devices assembled with the binding phases of DE 81 (DE 81 DGT) and Chelex gel (Chelex DGT) were tested both in synthetic river water solutions and in local river water. DE 81 DGT and Chelex DGT measured 80% and 75% of the total uranium in synthetic river water solution, respectively, and measured 73% and 60% of the total uranium in St. Lawrence River, Canada, respectively. The binding properties of the DE 81 membrane and Chelex gel for uranium, and the diffusion of uranyl complexes in the polyacrylamide gel (PAM) were also studied.  相似文献   

12.
Since its invention in the mid-1990s, the diffusive gradients in thin films (DGT) technique has rapidly become one of the most promising in situ sampling techniques for trace metal measurement in natural waters. We investigated here the possibility of using DGT devices with different binding phases to determine different DGT labile fractions of Cd and Cu in laboratory solutions and in natural waters. Several binding phases were studied, including conventional Chelex 100 resin imbedded polyacrylamide hydrogel (Chelex) and several recently developed binding phases, poly(acrylamide-co-acrylic acid) (PAM-PAA) gel, poly(acrylamidoglycolic acid-co-acrylamide) (PAAG-PAM) gel, Whatman P81 cellulose phosphate ion-exchange membrane (P81), and poly(4-styrenesulfonate) (PSS) aqueous solution. Laboratory testing in metal solutions spiked with EDTA or humic acid suggested that all the DGT devices measured only free metal ions and inorganic metal complexes. Upon field testing at both freshwater and seawater sites it was found that the DGT labile metal concentrations measured by different binding phases can be significantly different, suggesting that the DGT labile metal fractions were dependent on binding strength of the binding phase. By designing binding phases that can compete with different natural water complexing ligands to varying extents, it is possible to use these different DGT devices to measure metal speciation in natural waters.  相似文献   

13.
Concentrations of Cd, Cu, Cr, Pb, Ni and Zn were monitored in the Svitava River (the Czech Republic) during April and September 2005. Total concentrations and total dissolved concentrations were obtained through regular water sampling, and the diffusive gradients in thin films technique (DGT) were used to gain information on the kinetically labile metal concentrations. Each measured concentration was compared with the corresponding average (bio)available concentration calculated from the mass of metal accumulated by the moss species Fontinalis antipyretica. The concentrations of Cd, Pb, Cr and Zn measured using DGT corresponded well with those obtained after the deployment of Fontinalis antipyretica moss bags in the Svitava River, but the concentrations of Cu and Ni did not. The calculated (bio)available Cu concentration correlated well with the total dissolved concentration of Cu, whereas no correlation was found to exist between the concentrations of Ni. Scheme of the Svitava River monitoring station, including the DGT sampling units and Fontinalis antipyretica moss bags Electronic supplementary material Supplementary material is available in the online version of this article at and is accessible for authorized users.  相似文献   

14.
15.
The dynamic technique of diffusive gradients in thin films (DGT), that measures metal speciation in situ, has found wide environmental application. Simple interpretation of the metal accumulation in terms of a solution concentration has assumed that trace metals do not penetrate beyond the surface of the binding layer, but penetration, although theoretically discussed has not yet been directly measured. Multiple binding layers were used to enable analysis of different depths of a DGT binding phase (Chelex-100 or iminodiacetate resins). In simple metal solution (no ligand) at pH 7, metal penetration to the back layer was low and similar for all metals. However, at lower pH up to 42% of an individual metal accumulated in the back resin layer. This was most noticeable for Mn at pH 4 and 5, but Cd and Co were also affected at pH 4. These results were consistent with rate limited binding, particularly for Mn. A kinetic model successfully fitted the data and allowed derivation of a binding rate constant and the mean distance that metals penetrate into a resin gel (λM). Only for Mn, Co and Cd were experimentally derived λM values greater than the diameter of a Chelex-100 resin bead. For most situations, then, the penetration into the binding layer is negligible and binding of trace metal ions can be regarded as instantaneous, validating the simple use and interpretation of DGT. For weakly binding metals at low pH the slower binding allows penetration, which may affect the DGT measurement.  相似文献   

16.
17.
Measurements of the major cations Ca and Mg by the technique of diffusive gradients in thin films (DGTs) were systematically evaluated. The concentration in solution was calculated using Fick’s first law of diffusion from the directly measured flux to the DGT device. A selective cation exchange resin (Bio-Rad Chelex®100), which has been used extensively with DGT for trace metals, such as Cd2+, Cu2+ and Ni2+, was used for this work.

Elution of Ca and Mg from the resin with 1 M HNO3 was very reproducible. Measurements of Ca and Mg concentrations in synthetic solutions agreed well with the theoretical predictions. The negative response on uptake caused by lowered pH was investigated. Uptake was found to decline below pH 5. The capacity of the DGT device for Ca and Mg was also investigated to establish maximum deployment times for given concentrations.

Experiments with filtered and modified lake water show that DGT can be used to measure Ca and Mg when trace metals are present in the solution. An in situ deployment of DGT combined with an ultrafiltration study suggest that the Mg concentration measured by DGT is similar to the concentration found in the fraction <1 kDa.  相似文献   


18.
The performance characteristics of an alternative binding agent, suspended particulate reagent-iminodiacetate (SPR-IDA), for use with DGT methodology were investigated. The parameters investigated during this study included gel hydration, blank levels, elution factor (fe), capacity, the effects of pH on the binding of trace metals by DGT. The novel application of this resin for use as a quantitative standard for laser ablation ICP-MS was also evaluated. To further constrain the results for the SPR-IDA binding agent, parallel experiments were performed using resin gel containing Chelex 100, which has been widely reported in the literature. Hydration results showed that the SPR-IDA resin gel reached a stable dimension and weight within ∼30 min and was dimensionally stable for ≤6 months. The measured DGT blanks for the SPR-IDA resin were 0.0023, 0.15, 0.21, 0.0033 and 0.011 ng disc−1 for Co, Ni, Cu, Cd and Pb, respectively. The elution factor differed for the two resin types with the Chelex 100 recoveries slightly lower than previous reports and the SPR-IDA resin showing on average ∼5-9% better recoveries than DGT containing Chelex 100. The measured capacity of DGT discs containing the SPR-IDA binding agent was 0.26 mg Cd, similar to the calculated value of 0.29 mg Cd, indicating the entire resin layer was available for metal uptake.Both resin types performed equally well when deployed in 1 mM NaNO3 solutions with DGT measurements of ∼100% of direct solution measurements for Co, Ni and Cd. However, DGT measurements of Cu and Pb systematically decreased with increasing solution pH down to ∼50% of solution values at pH 8.0, due to artifacts resulting from colloid formation during the addition of the metals. This was remedied by adding the metals as dilute salt standards and addition of Mg(NO3)2 to eliminate adsorption to the container walls. In the latter experiments, DGT measured concentrations of Co, Ni, Cu, Cd and Pb were in agreement with solution concentrations. Deployment of DGT in solutions with increasing concentrations of trace metals yielded linear results, suggesting that quantitative analysis using simplified laser ablation techniques should be possible using this newly characterized SPR-IDA resin gel.  相似文献   

19.
Diffusive gradients in thin films (DGT) and tangential-flow ultrafiltration (TF-UF) were combined for fractionation of Al and Cu in river water containing high content of dissolved organic carbon. A procedure based on ultrafiltration data is proposed to determine diffusion coefficients of the analytes in water samples and model solutions containing both free metal (M) and complex (metal - humic substance). Aiming to evaluate the accuracy of the proposed approach, the DGT results were compared with those from a protocol for determination of labile Al and Cu based on solid phase extraction (SPE). Good agreement between data from DGT and SPE were attained for model solutions. For analysis of real organic-rich water samples, differences between DGT and SPE measurements were consistent with the time-scales of the techniques. The concentration of labile Al determined by DGT were lower than the total dissolved concentrations (determined by inductively coupled plasma mass spectrometry) and exceeded the ultrafiltered concentration, indicating that inorganic Al species (species small enough to pass through 1 kDa membrane) were minor species as compared with Al organic complexes. For both Al and Cu, there were species not measured by DGT as they are not sufficiently labile.  相似文献   

20.
In this work we build on prior studies of the novel water-soluble cationic conjugated polymer known as "P2" (poly{2,5-bis[3-( N, N, N-triethylammonium bromide)-1-oxapropyl]-1,4-phenylenevinylene}) with a focus on its incorporation into thin films for such applications as photovoltaics or electroluminescent devices. Multilayer assemblies were constructed using P2, the anionic surfactant sodium dodecyl sulfate (SDS), and the polyanion poly(sodium 4-styrene-sulfonate) (PSS) using the technique of layer-by-layer electrostatic self-assembly (LBL-ESA). SDS was observed to affect the layer thicknesses and absorbance characteristics of the films. We show that the optical properties and photo-oxidative resistance can be improved by varying the SDS content in the assemblies. Specifically, the surfactant-complexed poly( p-phenylenevinylene) (PPV) shows an enhanced absorption at longer wavelengths as well as improved photostability. Therefore, our work may have broad implications on the development of stable PPV-based materials in general and their efficient integration into thin films technologies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号