首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A single pulse interferometric coherent anti-Stokes Raman (CARS) spectroscopy method is used to obtain broadband CARS spectra and microscopy images of liquid and polymer samples. The pump, Stokes, and probe pulses are all selected inside a single broadband ultrafast pulse by a phase- and polarization-controlled pulse shaping technique and used to generate two spectral interference CARS signals simultaneously. The normalized difference of these two signals provides an amplified background-free broadband resonant CARS spectrum over the 400-1500 cm(-1) range with 35 cm(-1) spectral resolution. Chemically selective microscopy images of multicomponent polymer and liquid samples are investigated with this new CARS method. Multiplex CARS spectra at 10,000 spatial points are measured within a few minutes, and used to construct chemically selective microscopy images with a spatial resolution of 400 nm. The spectral bandwidth limits, sensitivity, homodyne amplification advantages, spatial resolution, depolarization, chromatic aberration, and chemical imaging aspects of this new technique are discussed in detail.  相似文献   

2.
The introduction of carbon-deuterium (C-D) bonds into drug compounds by organic synthesis is a non-invasive labelling approach, which does not alter the chemical and physiological properties of the drug itself. C-deuterated drugs exhibit characteristic vibrational signatures in the C-D stretching region around 2100-2300 cm(-1), which avoids spectral interference with contributions from a complex biological environment. In this paper, the quantitative detection of C-deuterated drugs by Raman microspectroscopy and single-band CARS microscopy is examined. Concentration-dependent studies on drugs with aliphatic and aromatic C-D moieties were performed in a two-channel microfluidic chip, using the corresponding non-deuterated (C-H) isotopologues as an internal reference.  相似文献   

3.
Coherent anti-Stokes Raman scattering (CARS) microscopy was used to visualize receptor-mediated endocytosis and intracellular trafficking with the aid of a CARS probe. The probe was made of 200-nm polystyrene particles encapsulated in folate-targeted liposomes. By tuning (omega(p) - omega(s)) to 3045 cm(-1), which corresponds to the aromatic C-H stretching vibration, the polystyrene nanoparticles with a high density of aromatic C-H bonds were detected with a high signal-to-noise ratio, while the epi-detected CARS signal from cellular organelles was cancelled by the destructive interference between the resonant contribution from the aliphatic C-H vibration and the nonresonant contribution. Without any photobleaching, the CARS probe allowed single-particle tracking analysis of intracellular endosome transport. No photodamage to cells was observed under the current experimental conditions. These results show the advantages and potential of using a CARS probe to study cellular processes.  相似文献   

4.
In this review the basis, recent developments and applications of coherent anti-Stokes Raman scattering (CARS) in the fields of spectroscopy and microscopy are dialed with. The nonlinear susceptibility of the investigated molecule induced by pump and Stokes laser beams employed in the CARS technique is discussed. The relation between the nonlinear susceptibility, the different CARS laser intensities and the phase matching condition between them is also presented. The structure of CARS spectrum is analyzed as a function of the physical characteristics of the different employed lasers. This includes laser half widths, interference effects, cross-coherence and saturation of the resultant CARS signal by stimulated Raman scatter process (SRS). The different broadening mechanisms for CARS spectral line such as pressure and Doppler broadening are demonstrated. The recent progress in CARS for the in situ reaction flame diagnosis due to its suitability for detection of vibrational-rotational excited gas molecules present in the electronic ground state is discussed. CARS diagnosis for liquid- and solid-phases including the progress in polymeric materials is considered. The applications of CARS microscopy are reviewed in the view of its recent advances to study chemical and biological systems.  相似文献   

5.
We demonstrate a single-beam coherent anti-Stokes Raman scattering (CARS) technique for gas-phase thermometry that assesses the species-specific local gas temperature by single-shot time-to-frequency mapping of Raman-coherence dephasing. The proof-of-principle experiments are performed with air in a temperature-controlled gas cell. Impulsive excitation of molecular vibrations by an ultrashort pump/Stokes pulse is followed by multipulse probing of the 2330 cm(-1) Raman transition of N(2). This sequence of colored probe pulses, delayed in time with respect to each other and corresponding to three isolated spectral bands, imprints the coherence dephasing onto the measured CARS spectrum. For calibration purposes, the dephasing rates are recorded at various gas temperatures, and the relationship is fitted to a linear regression. The calibration data are then used to determine the gas temperature and are shown to provide better than 15 K accuracy. The described approach is insensitive to pulse energy fluctuations and can, in principle, gauge the temperature of multiple chemical species in a single laser shot, which is deemed particularly valuable for temperature profiling of reacting flows in gas-turbine combustors.  相似文献   

6.
High-resolution (0.001 cm(-1)) coherent anti-Stokes Raman spectroscopy (CARS) has been used to study the nu1 symmetric CO stretching mode of the quasi-linear molecule carbon suboxide, C3O2. Q-branch transitions are seen that originate from the ground state and from thermally populated levels of the nu7 CCC bending mode, which is of unusually low frequency. The intensity variation of the Q-branch features on cooling to about 120 K in a jet expansion requires the reversal of the order of assignment given in a previous Raman study at low resolution. The identification of the nu1 sigma(g)+ <-- sigma(g)+ transition from the ground state is confirmed by the absence of J(odd) Q-branch lines in the resolved CARS spectrum. Analysis of this band in terms of a quasi-linear model gives a good fit to the observed transitions and leads to vibrational-rotational parameters (in cm(-1)) of nu1 = 2199.9773(12) and (B' - B') = -2.044(6) x 10(-4). Other transitions originating from higher nu7 levels occur at only slightly lower wavenumber values and permit the calculation of the double minimum potential in the Q7 bending coordinate. The results indicate that the ground-state barrier to linearity (21.5 cm(-1)) increases by only 0.6 cm(-1) when the CO symmetric stretch is excited.  相似文献   

7.
Time-resolved coherent anti-Stokes Raman-scattering (CARS) measurements are carried out for iodine (I2) in solid krypton matrices. The dependence of vibrational dephasing time on temperature and vibrational quantum number v is studied. The v dependence is approximately quadratic, while the temperature dependence of both vibrational dephasing and spectral shift, although weak, fits the exponential form characteristic of dephasing by pseudolocal phonons. The analysis of the data indicates that the frequency of the pseudolocal phonons is approximately 30 cm(-1). The longest dephasing times are observed for v = 2 being approximately 300 ps and limited by inhomogeneous broadening. An increase in the dephasing rate of v = 2 as the temperature is lowered to T = 2.6 K is taken as a clear indication of lattice-strain-induced inhomogeneity of the ensemble coherence.  相似文献   

8.
《Chemical physics》1987,118(1):133-139
Photoisomerization of bis-dimethylaminoheptamethine perchlorate (BMC) is investigated by nanosecond time-resolved CARS. During the excitation pulse, the CARS spectrum of a short-lived transient is observed. The kinetic and the spectral behaviour of this transient is consistent with a twisted S1 configuration being highly populated by simultaneous action of trans—cis and cis—trans photoisomerization. The CARS spectrum due to efficient generation of only one photoisomer configuration is obtained. Results from normal coordinate calculations suggest that a 1,2 mono-cis photoisomer has been generated.  相似文献   

9.
A theoretical expression is developed for femtosecond coherent anti-Stokes Raman scattering (CARS) to quantitatively account for the vibrational line shape in the presence of nonresonant signal. The contributions of the resonant and nonresonant components are extracted from the emitted signal line shape as a function of Stokes wavelength and as a function of the temporal overlap of the two pump pulses (for spectrally resolved femtosecond CARS). The theory is compared to the measured spectra of the oxygen vibrational transition DeltaG(01)=1556.4 cm(-1) for temporal detunings of 0 and 700 fs.  相似文献   

10.
A novel procedure is developed to describe and reproduce experimental coherent anti-Stokes Raman scattering (CARS) data, with particular emphasis on highly congested spectral regions. The approach, exemplified here with high-quality multiplex CARS data, makes use of spontaneous Raman scattering results. It is shown that the underlying vibrational Raman response can be retrieved from the multiplex CARS spectra, so that the Raman spectrum can be reconstituted, provided an adequate signal-to-noise ratio (SNR) is present in the experimental data and sufficient a priori knowledge of the vibrational resonances involved exists. The conversion of CARS to Raman data permits a quantitative interpretation of CARS spectra. This novel approach is demonstrated for highly congested multiplex CARS spectra of adenosine mono-, di-, and triphosphate (AMP, ADP, and ATP), nicotinamide adenine dinucleotide (NAD+), and small unilamellar vesicles (SUVs) of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC). Quantitative determination of nucleotide concentrations and composition analysis in mixtures is demonstrated.  相似文献   

11.
Coherent anti-stokes Raman scattering (CARS) microscopy is a label-free chemical imaging modality capable of interrogating local molecular composition, concentration, and even orientation. In comparison to traditional Raman spectroscopy/imaging, CARS generates signals that are typically orders-of-magnitude stronger, enabling high-throughput and large-area imaging with superior spectroscopic fidelity. In this review, we present an overview of CARS microscopy as applied to polymer science, covering such timely and important topics as drug release and reaction kinetics to 3D molecular structures and orientation. We also discuss outstanding opportunities and challenges to using CARS microscopy as a quantitative measurement method.  相似文献   

12.
S-branch N(2)-H(2) Raman linewidths have been measured in the temperature region 294-1466 K using time-resolved dual-broadband picosecond pure rotational coherent anti-Stokes Raman spectroscopy (RCARS). Data are extracted by mapping the dephasing rates of the CARS signal temporal decay. The J-dependent coherence decays are detected in the time domain by following the individual spectral lines as a function of probe delay. The linewidth data set was employed in spectral fits of N(2) RCARS spectra recorded in binary mixtures of N(2) and H(2) at calibrated temperature conditions up to 661 K using a standard nanosecond RCARS setup. In this region, the set shows a deviation of less than 2% in comparison with thermocouples. The results provide useful knowledge for the applicability of N(2) CARS thermometry on the fuel-side of H(2) diffusion flames.  相似文献   

13.
Vibrational properties of a porphyrin J-aggregate microcrystal have been investigated by ultra-broadband multiplex coherent anti-Stokes Raman scattering (CARS) microspectroscopy using a supercontinuum light source generated from a photonic crystal fiber. Owing to a strong resonance effect due to an excitonic transition, clear spectral and spatial profiles of the CARS signal have been successfully obtained. On the basis of the comparison between the CARS and the fluorescence images, the spatial dependence of the CARS signal can be explained by the spatial inhomogeneity of the excitonic transition energy in the single J-aggregate microcrystal.  相似文献   

14.
The molecular organization inside myelin figures of various surfactants are studied by laser scanning coherent anti-Stokes Raman scattering (CARS) microscopy that permits three-dimension vibrational imaging. The resonant CARS signals from CH2 and H2O stretch vibrations are used to probe the surfactant and water molecules inside the myelin figures formed of C12E3, lecithin, and Aerosol OT. The polarization sensitivity of CARS is used to analyze the orientation of the CH2 groups and the H2O molecules. The CARS images suggest that the myelin figure is a concentric lamellar structure with alternating surfactant bilayers and partially ordered water layers. No sizable water core is observed in the CARS images at the lateral resolution of 0.3 microm and the axial resolution of 0.75 microm. The CARS data are verified by confocal fluorescence microscopy with FITC and DOPE-rhodamine labeling the water and bilayers, respectively. The relationship between the molecular composition and ordering inside the myelin figures and the surfactant structure has been investigated.  相似文献   

15.
Microscopic Fourier transform infrared spectroscopy (FTIR) which is based on the characteristic molecular vibrational spectra of cells was previously applied for the identification of various biological samples. In the present study, FTIR spectroscopy was used for the characterization of different stages during the development of herpes viruses infection. Vero cells in culture were infected with high and low doses of different herpes viruses [herpes simplex virus types 1 and 2 (HSV-1, -2) or varicella-zoster virus (VZV)], and cellular changes were observed by optical and electron microscopy and analyzed by FTIR microscopy at different periods of time post-infection. Specific different spectral changes were observed at various stages of the viral infection development. The spectral intensity in the 1220-1260 cm(-1) region (mainly attributed to phosphate levels) was considerably increased in all infected cells compared to normal uninfected cells during the early stages of the viral infection development. However, at the late stages of the viral infection development (when all the cells in the infected culture lost their spindle shape and became circular) the spectral intensities in this region significantly decreased in the infected compared to the control cells. In addition, the peak at 1023 cm(-1), attributed to carbohydrates, almost fully disappeared at early stages of the viral infection development, whereas at late stages of the infection it raised to an equivalent or higher level than that of the uninfected control cells. These results support the potential of developing FTIR microspectroscopy as a simple, reagent free method for the early detection and accurate differentiation of different stages during the development of herpes virus infection.  相似文献   

16.
We describe a simple multiplex vibrational spectroscopic imaging technique based on employing chirped femtosecond pulses in a coherent anti-Stokes Raman scattering (CARS) scheme. Overlap of a femtosecond Stokes pulse with chirped pump/probe pulses introduces a temporal gate that defines the spectral resolution of the technique, allowing single-shot acquisition of high spectral resolution CARS spectra over a several hundred wavenumber bandwidth. Simulated chirped (c-) CARS spectra match the experimental results, quantifying the dependence of the high spectral resolution on the properties of the chirped pulse. c-CARS spectromicroscopy offers promise as a simple and generally applicable high spatial resolution, chemically specific imaging technique for studying complex biological and materials samples.  相似文献   

17.
提出了一种基于近红外光谱分析技术的酵母菌生长过程描述方法.利用Antaris Ⅱ型傅里叶变换近红外光谱仪获取酵母菌培养过程中,发酵物样本在10000~4000 1范围内的光谱数据,同时采用光电比浊法测定各样本的光密度(Optical density, OD)值;运用竞争性自适应重加权采样(Competitive adaptive reweighted sampling, CARS)算法优选特征光谱,再利用极限学习机(Extreme learning machine, ELM)建立酵母菌生长过程4个阶段的分类模型.研究结果显示,参与CARS-ELM模型建立的波长个数为30,其10次运行在训练集和测试集中的平均识别率分别为98.68%和97.37%.研究结果表明,利用近红外光谱分析技术结合适当的化学计量学方法描述酵母菌生长过程是可行的.  相似文献   

18.
Measurements of acetylene concentrations in an arc plasma test reactor using coherent anti-Stokes Raman scattering (CARS) are described. The method is based on the measurement of relative spectral shapes in the presence of a substantial nonresonant background. Calculations of CARS spectra, necessary for the concentration analysis, are described. The quality of calculated spectra is examined with the aid of reference spectra taken in a graphite oven operated under variable, known temperatures and concentrations. The measurements with the plasma test reactor yield spatially resolved concentration distributions of a few percent. Comparison with 1R absorption measurements shows satisfactory agreement.  相似文献   

19.
Adulteration of foods has been known to exist for a long time and various analytical tests have been reported to address this problem. Among them, authenticity of sesame oil has attracted much attention. Near-infrared (NIR) spectral quantitative detection models of sesame oil adulterated with other oils are constructed by chemometric methods, i.e., competitive adaptive reweighted sampling (CARS), elastic component regression (ECR) and partial least squares (PLS). Sixty samples adulterated with different proportions of five kinds of other oils of lower price were scanned by a Fourier-transform-NIR spectrometer and the NIR spectra were collected in 4500–10000 cm−1 region by transmission mode. All samples were divided into the training set and an independent test set. Model population analysis has also been carried out and confirms the importance of selecting representative samples. The experimental results indicate that the PLS model using only 10 variables from CARS and the ECR model show similar performance and both are superior to the full-spectrum PLS model. CARS focuses on selecting variables and ECR focuses on optimizing the parameters, implying that both roads lead to the same destination. It seems that NIR technique combined with CARS or ECR is feasible for rapidly detecting sesame oil adulterated with other vegetable oils.  相似文献   

20.
Coherent anti-Stokes Raman scattering (CARS) microscopy is presented as a new nonlinear optical technique. The combination of vibrational spectroscopy and microscopy allows highly sensitive investigations of unlabelled samples. CARS is an ideal tool for studying a broad variety of samples. The main drawback of the technique is its non-zero-background nature, which implies that the signal has to be detected against a nonresonant background. The need to solve this problem is reflected in the rapid technological developments that have been observed during the last decade. Recent results show that CARS microscopy has the potential to become an important complementary technique that can be used with other well-established microscopic methods. Although it has some limitations, it offers unique access to many problems that cannot be tackled with conventional techniques. For this reason, it can be expected that the impressive growth of the field will continue.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号