首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Results on partition of energy and on energy decay are derived for solutions of the Cauchy problem ?u?t + ∑j = 1n Aj?u?xj = 0, u(0, x) = ?(x). Here the Aj's are constant, k × k Hermitian matrices, x = (x1,…, xn), t represents time, and u = u(t, x) is a k-vector. It is shown that the energy of Mu approaches a limit EM(?) as ¦ t ¦ → ∞, where M is an arbitrary matrix; that there exists a sufficiently large subspace of data ?, which is invariant under the solution group U0(t) and such that U0(t)? = 0 for ¦ x ¦ ? a ¦ t ¦ ? R, a and R depending on ? and that the local energy of nonstatic solutions decays as ¦ t ¦ → ∞. More refined results on energy decay are also given and the existence of wave operators is established, considering a perturbed equation E(x) ?u?t + ∑j = 1n Aj?u?xj = 0, where ¦ E(x) ? I ¦ = O(¦ x ¦?1 ? ?) at infinity.  相似文献   

2.
Let {Xt, t ≥ 0} be Brownian motion in Rd (d ≥ 1). Let D be a bounded domain in Rd with C2 boundary, ?D, and let q be a continuous (if d = 1), Hölder continuous (if d ≥ 2) function in D?. If the Feynman-Kac “gauge” Ex{exp(∝0τDq(Xt)dt)1A(XτD)}, where τD is the first exit time from D, is finite for some non-empty open set A on ?D and some x?D, then for any ? ? C0(?D), φ(x) = Ex{exp(∝0τDq(Xt)dt)?(XτD)} is the unique solution in C2(D) ∩ C0(D?) of the Schrödinger boundary value problem (12Δ + q)φ = 0 in D, φ = ? on ?D.  相似文献   

3.
Let D(?) be the Doob's class containing all functions f(z) analytic in the unit disk Δ such that f(0) = 0 and lim inf¦f(z) ¦ ? 1 on an arc A of ?Δ with length ¦A ¦? ?. It is first proved that if f?D(?) then the spherical norm ∥ f ∥ = supz?Δ(1 ? ¦z¦2)¦f′(z)¦(1 + ¦f(z)¦2) ? C1sin(π ? (?2))/ (π ? (g92)), where C1 = limn→∞∥ znand12 < C1 < 2e. Next, U represents the Seidel's class containing all non-constant functions f(z) bounded analytic in Δ such that ¦tf(ei0)¦ = 1 almost everywhere. It is proved that inff?Uf∥ = 0, and if f has either no singularities or only isolated singularities on ?Δ, then ∥f∥ ? C1. Finally, it is proved that if f is a function normal in Δ, namely, the norm ∥f∥< ∞, then we have the sharp estimate ∥fp∥ ? pf∥, for any positive integer p.  相似文献   

4.
Let U, V be two strongly continuous one-parameter groups of bounded operators on a Banach space X with corresponding infinitesimal generators S, T. We prove the following: ∥Ut, ? Vt ∥ = O(t), t → 0, if and only if U = V; ∥Ut ? Vt∥ = O(tα), t → 0; with 0 ? α ? 1, if and only if S = Ω(T + P)Ω?1, where Ω, P, are bounded operators on X such that ∥UtΩ ? ΩUt∥ = O(tα), ∥UtP ? PUt∥ = ?O(tα), t → 0; ∥Ut ? Vt∥ = O(t) if and only if S1 ? T1 has a bounded extension to X1. Further results of this nature are inferred for semigroups, reflexive spaces, Hilbert spaces, and von Neumann algebras.  相似文献   

5.
6.
Let u(x, t) be the solution of utt ? Δxu = 0 with initial conditions u(x, 0) = g(x) and ut(x, 0) = ?;(x). Consider the linear operator T: ?; → u(x, t). (Here g = 0.) We prove for t fixed the following result. Theorem 1: T is bounded in Lp if and only if ¦ p?1 ? 2?1 ¦ = (n ? 1)?1and ∥ T?; ∥LαP = ∥?;∥LPwith α = 1 ?(n ? 1) ¦ p?1 ? 2?1 ¦. Theorem 2: If the coefficients are variables in C and constant outside of some compact set we get: (a) If n = 2k the result holds for ¦ p?1 ? 2?1 ¦ < (n ? 1)?1. (b) If n = 2k ? 1, the result is valid for ¦ p?1 ? 2?1 ¦ ? (n ? 1). This result are sharp in the sense that for p such that ¦ p?1 ? 2?1 ¦ > (n ? 1)?1 we prove the existence of ?; ? LP in such a way that T?; ? LP. Several applications are given, one of them is to the study of the Klein-Gordon equation, the other to the completion of the study of the family of multipliers m(ξ) = ψ(ξ) ei¦ξ¦ ¦ ξ ¦ ?b and finally we get that the convolution against the kernel K(x) = ?(x)(1 ? ¦ x ¦)?1 is bounded in H1.  相似文献   

7.
A spectral representation for the self-adjoint Schrödinger operator H = ?Δ + V(x), x? R3, is obtained, where V(x) is a long-range potential: V(x) = O(¦ x ¦?(12)), grad V(x) = O(¦ x ¦?(32)), ΛV(x) = O(¦ x s?) (δ > 0), Λ being the Laplace-Beltrami operator on the unit sphere Ω. Namely, we shall construct a unitary operator F from PL2(R3) onto L2((0, ∞); L2(Ω)), P being the orthogonal projection onto the absolutely continuous subspace for H, such that for any Borel function α(λ),
(α(H)(Pf,g)=0 (α(λ)(Ff)(λ),(Fg)(λ))L2(ω) dλ
.  相似文献   

8.
The author discusses the best approximate solution of the functional differential equation x′(t) = F(t, x(t), x(h(t))), 0 < t < l satisfying the initial condition x(0) = x0, where x(t) is an n-dimensional real vector. He shows that, under certain conditions, the above initial value problem has a unique solution y(t) and a unique best approximate solution p?k(t) of degree k (cf. [1]) for a given positive integer k. Furthermore, sup0?t?l ¦ p?k(t) ? y(t)¦ → 0 as k → ∞, where ¦ · ¦ is any norm in Rn.  相似文献   

9.
Let m and vt, 0 ? t ? 2π be measures on T = [0, 2π] with m smooth. Consider the direct integral H = ⊕L2(vt) dm(t) and the operator (L?)(t, λ) = e?iλ?(t, λ) ? 2e?iλtT ?(s, x) e(s, t) dvs(x) dm(s) on H, where e(s, t) = exp ∫stTdvλ(θ) dm(λ). Let μt be the measure defined by T?(x) dμt(x) = ∫0tT ?(x) dvs dm(s) for all continuous ?, and let ?t(z) = exp[?∫ (e + z)(e ? z)?1t(gq)]. Call {vt} regular iff for all t, ¦?t(e)¦ = ¦?(e for 1 a.e.  相似文献   

10.
We consider the mixed boundary value problem Au = f in Ω, B0u = g0in Γ?, B1u = g1in Γ+, where Ω is a bounded open subset of Rn whose boundary Γ is divided into disjoint open subsets Γ+ and Γ? by an (n ? 2)-dimensional manifold ω in Γ. We assume A is a properly elliptic second order partial differential operator on Ω and Bj, for j = 0, 1, is a normal jth order boundary operator satisfying the complementing condition with respect to A on Γ+. The coefficients of the operators and Γ+, Γ? and ω are all assumed arbitrarily smooth. As announced in [Bull. Amer. Math. Soc.83 (1977), 391–393] we obtain necessary and sufficient conditions in terms of the coefficients of the operators for the mixed boundary value problem to be well posed in Sobolev spaces. In fact, we construct an open subset T of the reals such that, if Ds = {u ? Hs(Ω): Au = 0} then for s ? = 12(mod 1), (B0,B1): Ds → Hs ? 12?) × Hs ? 32+) is a Fredholm operator if and only if s ∈T . Moreover, T = ?xewTx, where the sets Tx are determined algebraically by the coefficients of the operators at x. If n = 2, Tx is the set of all reals not congruent (modulo 1) to some exceptional value; if n = 3, Tx is either an open interval of length 1 or is empty; and finally, if n ? 4, Tx is an open interval of length 1.  相似文献   

11.
We consider the pure initial value problem for the system of equations νt = νxx + ?(ν) ? w, wt= ε(ν ? γw), ε, γ ? 0, the initial data being (ν(x, 0), w(x, 0)) = (?(x), 0). Here ?(v) = ?v + H(v ? a), where H is the Heaviside step function and a ? (0, 12). This system is of the FitzHugh-Nagumo type and has several applications including nerve conduction and distributed chemical/ biochemical systems. It is demonstrated that this system exhibits a threshold phenomenon. This is done by considering the curve s(t) defined by s(t) = sup{x: v(x, t) = a}. The initial datum, ?(x), is said to be superthreshold if limt→∞ s(t) = ∞. It is proven that the initial datum is superthreshold if ?(x) > a on a sufficiently long interval, ?(x) is sufficiently smooth, and ?(x) decays sufficiently fast to zero as ¦x¦ → ∞.  相似文献   

12.
Let {Fr}0?r?p be a family of Banach spaces satisfying, if 0?r1?r2?p, (i)Fr1 ? Fr2; (ii)¦f¦r1 ? ¦f¦r2 (f ? Fr1); and (iii)?(r) = ln(¦f¦r) is a convex function. Let G0 be a Banach space and. F be a Gâteaux differentiate mapping, and suppose that F′(x)(Fp) is dense in G0. Under appropriate assumptions, the equation F(x)=0 has a solution in Fr for 0?r?p. The results extend the Inverse Function Theorem of J. Moser to the class of Gâteaux differentiable operators.  相似文献   

13.
In this paper we study the linked nonlinear multiparameter system
yrn(Xr) + MrYr + s=1k λs(ars(Xr) + Prs) Yr(Xr) = 0, r = l,…, k
, where xr? [ar, br], yr is subject to Sturm-Liouville boundary conditions, and the continuous functions ars satisfy ¦ A ¦ (x) = detars(xr) > 0. Conditions on the polynomial operators Mr, Prs are produced which guarantee a sequence of eigenfunctions for this problem yn(x) = Πr=1kyrn(xr), n ? 1, which form a basis in L2([a, b], ¦ A ¦). Here [a, b] = [a1, b1 × … × [ak, bk].  相似文献   

14.
15.
Numerical approximation of the solution of the Cauchy problem for the linear parabolic partial differential equation is considered. The problem: (p(x)ux)x ? q(x)u = p(x)ut, 0 < x < 1,0 < t? T; u(0, t) = ?1(t), 0 < t ? T; u(1,t) = ?2(t), 0 < t ? T; p(0) ux(0, t) = g(t), 0 < t0 ? t ? T, is ill-posed in the sense of Hadamard. Complex variable and Dirichlet series techniques are used to establish Hölder continuous dependence of the solution upon the data under the additional assumption of a known uniform bound for ¦ u(x, t)¦ when 0 ? x ? 1 and 0 ? t ? T. Numerical results are obtained for the problem where the data ?1, ?2 and g are known only approximately.  相似文献   

16.
For an open set Ω ? RN, 1 ? p ? ∞ and λ ∈ R+, let W?pλ(Ω) denote the Sobolev-Slobodetzkij space obtained by completing C0(Ω) in the usual Sobolev-Slobodetzkij norm (cf. A. Pietsch, “r-nukleare Sobol. Einbett. Oper., Ellipt. Dgln. II,” Akademie-Verlag, Berlin, 1971, pp. 203–215). Choose a Banach ideal of operators U, 1 ? p, q ? ∞ and a quasibounded domain Ω ? RN. Theorem 1 of the note gives sufficient conditions on λ such that the Sobolev-imbedding map W?pλ(Ω) λ Lq(Ω) exists and belongs to the given Banach ideal U: Assume the quasibounded domain fulfills condition Ckl for some l > 0 and 1 ? k ? N. Roughly this means that the distance of any x ? Ω to the boundary ?Ω tends to zero as O(¦ x ¦?l) for ¦ x ¦ → ∞, and that the boundary consists of sufficiently smooth ?(N ? k)-dimensional manifolds. Take, furthermore, 1 ? p, q ? ∞, p > k. Then, if μ, ν are real positive numbers with λ = μ + v ∈ N, μ > λ S(U; p,q:N) and v > N/l · λD(U;p,q), one has that W?pλ(Ω) λ Lq(Ω) belongs to the Banach ideal U. Here λD(U;p,q;N)∈R+ and λS(U;p,q;N)∈R+ are the D-limit order and S-limit order of the ideal U, introduced by Pietsch in the above mentioned paper. These limit orders may be computed by estimating the ideal norms of the identity mappings lpnlqn for n → ∞. Theorem 1 in this way generalizes results of R. A. Adams and C. Clark for the ideals of compact resp. Hilbert-Schmidt operators (p = q = 2) as well as results on imbeddings over bounded domains.Similar results over general unbounded domains are indicated for weighted Sobolev spaces.As an application, in Theorem 2 an estimate is given for the rate of growth of the eigenvalues of formally selfadjoint, uniformly strongly elliptic differential operators with Dirichlet boundary conditions in L2(Ω), where Ω fulfills condition C1l.For an open set Ω in RN, let W?pλ(Ω) denote the Sobolev-Slobodetzkij space obtained by completing C0(Ω) in the usual Sobolev-Slobodetzkij norm, see below. Taking a fixed Banach ideal of operators and 1 ? p, q ? ∞, we consider quasibounded domains Ω in RN and give sufficient conditions on λ such that the Sobolev imbedding operator W?pλ(Ω) λ Lq(Ω) exists and belongs to the Banach ideal. This generalizes results of C. Clark and R. A. Adams for compact, respectively, Hilbert-Schmidt operators (p = q = 2) to general Banach ideals of operators, as well as results on imbeddings over bounded domains. Similar results over general unbounded domains may be proved for weighted Sobolev spaces. As an application, we give an estimate for the rate of growth of the eigenvalues of formally selfadjoint, uniformly strongly elliptic differential operators with Dirichlet boundary conditions in L2(Ω), where Ω is a quasibounded open set in RN.  相似文献   

17.
We propose a generalization of Heath's theorem that semi-metric spaces with point-countable bases are developable: A semi-metrizable space X is developabale if (and only if) there is on it a σ-discrete family C=?m?NCm of closed sets, interior-preserving over each member C of which is a countable family {Dn(C): n ∈ N} of collections of open sets such that if U is a neighbourhood of ξ∈X, then there are such a Γ∈C and such a v∈ N that ξ ? Γ and ξ∈ int ∩ (D: ξ: DDv(Γ))?U.  相似文献   

18.
We study the Schrödinger equation iy′+Δy+qy=0 on Ω×(0,T) with Dirichlet boundary data y|?Ω×(0,T) and initial condition y|Ω×{0} and we consider the inverse problem of determining the potential q(x), x∈Ω when ?y|Γ0×(0,T) is given, where Γ0 is an open subset of satisfying an appropriate geometrical condition. The detailed proof will be given in [1]. To cite this article: L. Baudouin, J.-P. Puel, C. R. Acad. Sci. Paris, Ser. I 334 (2002) 967–972.  相似文献   

19.
Given a cocycle a(t) of a unitary group {U1}, ?∞ < t < ∞, on a Hilbert space H, such that a(t) is of bounded variation on [O, T] for every T > O, a(t) is decomposed as a(t) = f;t0Usxds + β(t) for a unique x ? H, β(t) yielding a vector measure singular with respect to Lebesgue measure. The variance is defined as σ2({rmUt}, a(t)) = limT→∞(1T)∥∝t0 Us x ds∥2 if existing. For a stationary diffusion process on R1, with Ω1, the space of paths which are natural extensions backwards in time, of paths confined to one nonsingular interval J of positive recurrent type, an information function I(ω) is defined on Ω1, based on the paths restricted to the time interval [0, 1]. It is shown that I(Ω) is continuous and bounded on Ω1. The shift τt, defines a unitary representation {Ut}. Assuming Ω1 I dm = 0, dm being the stationary measure defined by the transition probabilities and the invariant measure on J, I(Ω) has a C spectral density function f;. It is then shown that σ2({Ut}, I) = f;(O).  相似文献   

20.
Absolute continuity in (0, ∞) for Schrödinger operators ? Δ + V(x), with long range potential V = V1 + V2 such that ?V1?r, V2 = 0(r?1??), ? > 0, as ¦ x ¦ → ∞, is shown by proving estimates on resolvents near the real axis. Completeness of the modified wave operators for a superposition of Coulomb potentials also follows. Singular local behavior of V is allowed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号