首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
The corrosion rate of a copper electrode in deaerated 1.0 M HCl by Fe(III) ions, in the absence and presence of benzotriazole (BTAH), has been evaluated through weight-loss experiments using a rotating disk electrode (RDE). The corrosion process is controlled by transport of the Fe(III) ions to the electrode surface both in the absence and presence of BTAH. The inhibiting action is initiated at BTAH concentrations around 10 mM and the Langmuir adsorption isotherm is obeyed in the BTAH concentration range from 10 to 45 mM with an apparent equilibrium adsorption constant of 10 M−1. Above this concentration, the Langmuir plot is not obeyed due to the formation of a multilayer. The surface films formed during the corrosion process have been investigated by “in situ” and “ex situ” fluorescence and Raman spectroscopy and characterized as being composed of the polymeric [Cu(I)BTA] complex and [Cu(I)CIBTAH]4, the former as an inner layer response for the corrosion inhibition process.  相似文献   

2.
用光电化学方法研究了铜电极在含苯并三唑(BTA)的硼砂-硼酸缓冲溶液中的光电化学行为。BTA能使铜电极的光响应由p-型转变为n-型。产生光响应的原因是铜电极表面的Cu2O膜。当BTA存在时由于BTA的作用致使电极表面Cu2O膜中共存着p-型和n-型区域, 电位正移和频率增加导致电极显示n-型光响应。  相似文献   

3.
In the presence of adenine and adenosine, the copper(II)/copper(Hg) couple splits to the copper(II)/copper(I) and copper(I)/copper(Hg) couples. Sparingly soluble complexes of copper(I) with adenine and adenosine can be accumulated on the electrode surface either by reduction of Cu(II) ions or by oxidation of the copper amalgam electrode. The copper(I)/adenine deposit can be stripped either cathodically or anodically with detection limits of 5×10?9 and 2×10?8 mol dm?3, respectively. The copper(I)/ adenosine complex yields only the cathodic stripping peak with a detection limit of 9×10?6 mol dm?3. The stripping peaks obtained for the copper(I)/adenine and copper(I)/ adenosine complexes are better defined and appear over a wider range of pH than the peaks related to the corresponding mercury compounds. Adenosine cannot be determined in the presence of adenine bur adenine can be determined in the presence of moderate amounts of adenosine.  相似文献   

4.
Neshkova M  Sheytanov H 《Talanta》1985,32(10):937-947
The behaviour of two types of solid-state homogeneous sensors for copper(II), one based on pressed pellets of ternary CuAgSe and the other on thin-layer electroplated Cu(2-x)Se, in 12 different copper(II)-ligand systems, has been thoroughly investigated. Both electrodes exhibit anomalous behaviour when the ligands are of complexone type, the effect of the complexones on the deviations increasing in the order IDA < NTA < EDTA approximately DTPA, and being practically the same for the two types of sensors, thus disproving a previous suggestion that the anomaly is due to the silver in the silver-containing sensors. The experimental data do not support the specific ligand-adsorption hypothesis either. The observed deviations are tentatively explained on the basis that, as suggested by the selectivity coefficients, both sensors act as primary copper(I) ion-selective electrodes rather than copper(II)-electrodes. Thus, at very low copper(II) concentrations, according to the extended Nikolskii equation, the [Cu(I)]/[Cu(II)] ratio at the electrode surface determines the electrode sensitivity towards Cu(II). The lower detection limit could be improved by pH-control and selective complexation of Cu(I). This hypothesis has been proved experimentally. If the copper(I) activity on the electrode surface is decreased, the anomaly observed for the Cu(II)-NTA system disappears and decreases considerably for the Cu(II)-EDTA and Cu(II)-DTPA systems.  相似文献   

5.
The synergistic effect of benzotriazole (BTAH) and molybdate on the inhibition of copper tarnish was studied in this paper. The antitarnish treatment of copper was conducted with BTAH solution containing molybdate. The surface morphology observation and composition analysis were investigated by SEM with energy dispersive X‐ray (EDX) spectroscopy. The addition of molybdate improved the protection of BTAH significantly. The BTAH + molybdate treated copper specimen has higher N concentration in its surface. The structure of the protective film was studied by XPS and AES measurements. It was characterized to be a complex of Cu(I)BTA. The antitarnish effect is certified by the formation of the protective Cu(I)BTA film. Molybdate does not participate in the formation of the protective film. The presence of molybdate promotes the passivation of copper. This facilitates the stabilization of the cuprous oxide film, and strengthens the adsorption of BTAH. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

6.
The electrochemical behavior of complexes of fatty amides, synthesized from vegetable oil, with Cu(II) has been investigated. In this study, a platinum electrode was used in presence of DMSO as a medium. Reduction of Cu(II)/fatty amides complex was found with quasi-reversible reaction. The peak potential of voltammetric behavior of fatty amides is about ?0.77 V at a scan rate v = 0.1 V s?1 versus Ag|Ag+ electrode. This study shows that Cu(II)-fatty amides complex is poorly adsorbed on the electrode surface. Additionally, the copper complex form of fatty amides has a more stable structure than pure fatty amides to form the electrochemical reduction of the complex.  相似文献   

7.
The coordination polymerization of benzotriazole with metallic copper has been investigated by infrared and X-ray photoelectron spectroscopies. We found that benzotriazole could react with copper (0) under mild conditions to form bis (benzotriazolato) copper (Ⅱ) and benzotriazolato copper (Ⅰ)which covered the surface of copper metal in the shape of polymeric materials. Since benzotriazole is of great interest as a ligand in that its presence in many biological system with metal ions, and is considered as a corrosion inhibitor, this work will be in favour of the study of protective corrosion.  相似文献   

8.
We report about a new kind of directly heated gold electrode. All electrodes including a directly heated gold loop electrode, a Ag pseudo reference, and a carbon counter electrode have been screen-printed on a ceramic alumina substrate. Thermal behaviour was studied by potentiometry using either an external or the integrated reference electrode. Stripping voltammetric copper signals were greatly improved at elevated deposition temperature. Secondary ion mass spectrometric studies (ToF-SIMS) revealed that different negative ionic species of copper complexes can be found on the gold electrode surface as a result of ion bombardment during SIMS analysis like Cu?, CuCl? and CuCl2 ?. SIMS surface imaging using a fine focussed ion beam over the surface allowed us to obtain ion images (chemical maps) of the analyzed sample. SIMS depth profile analysis of the gold loop electrode was performed after copper deposition at room temperature (23 °C) and at 60 °C. CuCl2 ? ion was used for the depth profile studies as it has shown the highest intensity among other observed species. Surface spectroscopic analysis, surface imaging and depth profile analysis have shown that the amount of deposited copper species on the gold loop electrode was increased upon increasing electrode temperature during the deposition step. Therefore, the presence of chloride in the solution will hinder underpotential deposition of Cu(0) and lead to badly defined and resolved stripping peaks.  相似文献   

9.
The well‐known method for the determination of mercury(II), which is based on the anodic stripping voltammetry of mercury(II), has been adapted for applications at the thin film poly(3‐hexylthiophene) polymer electrode. Halide ions have been found to increase the sensitivity of the mercury response and shift it more positive potentials. This behavior is explained by formation of mercuric halide which can be easily deposited and stripped from the polymer electrode surface. The procedure was optimized for mercury determination. For 120 s accumulation time, detection limit of 5 ng mL?1 mercury(II) has been observed. The relative standard deviation is 1.3% at 40 ng mL?1 mercury(II). The performance of the polymer film studied in this work was evaluated in the presence of surfactants and some potential interfering metal ions such as cadmium, lead, copper and nickel.  相似文献   

10.
The adsorption of copper species on a positively charged hanging mercury drop electrode in complexing ligand/surfactant/chloride solution is discussed. Techniques used were differential pulse voltammetry of the copper in the adsorbed film, and potential-step reduction of adsorbed copper followed by different pulse anodic stripping voltammetry of Cu(Hg). The CuCl?2 species is shown to be the most important copper moiety adsorbed on the electrode and the adsorption is enhanced by organic films. This can be a critical pathway in the reduction of copper(II) in estuarine waters. The induced adsorption of copper in organic layers has biogeochemical implications associated with the nature of organic films and their influence on the Cu(II)/Cu(I) redox couple. There are also analytical applications, e.g., the compositional assay of organic monolayers by utilising Cu(II) and Cu(I) adsorption as electoractive probes and the determination of solution copper-organic binding.  相似文献   

11.
Qiu S  Xie L  Gao S  Liu Q  Lin Z  Qiu B  Chen G 《Analytica chimica acta》2011,707(1-2):57-61
Herein, a novel sensitive electrochemical sensor for copper(II) based on Cu(I) catalyzed alkyne-azide cycloaddition reaction (CuAAC) is described. The catalyst of Cu(I) species is derived from electrochemical reduction of Cu(II) through bulk electrolysis (BE) with coulometry technique. The propargyl-functionalized ferrocene (propargyl-functionalized Fc) is covalently coupled onto the electrode surface via CuAAC reaction and forms propargyl-functionalized Fc modified gold electrode, which allows a good and stable electrochemical signal. The change of current at peak (dI), detected by differential pulse voltammetry (DPV), exhibits a linear response to the logarithm of Cu(II) concentration in the range of 1.0×10(-14)-1.0×10(-9) mol L(-1). It is also found that the proposed sensor has a good selectivity for copper(II) assay even in the presence of other common metal ions. Additionally, the proposed method has been applied to determine copper(II) in the dairy product (yoghurt) with satisfactory results.  相似文献   

12.
The membrane electrode based on a synthetic chalcocite (Cu(2)S) single crystal responds primarily to the activity of copper(I) ions in solution. The experimental selectivity coefficient with respect to copper(II) ions is in good agreement with the value calculated on the basis of solubility products of both sulphides. The electrode has been calibrated with metal-ion buffers containing a strongly complexing ligand. TETREN, and can be used as an indicator in titrations of copper with EDTA and TETREN. Comparison of an experimental titration curve with one calculated with the aid of the program HALTAFALL showed good agreement in the case of TETREN, but there were discrepancies for the EDTA titration, which are attributed to the presence and complexation of copper(I) ions. The electrode has also been applied in metal titrations with Cu(2+) as indicator ion, though the potential changes observed were smaller than predicted. All titrations showed errors less than 1%.  相似文献   

13.
A complete series of copper(ii) halide complexes [CuX(tptm)](X = F (), Cl (), Br (), I (); tptm = tris(2-pyridylthio)methyl) with a novel Cu(II)-C(sp(3)) bond has been prepared by the reactions of [Cu(tptm)(CH(3)CN)]PF(6)(.PF(6)) with corresponding halide sources of KF or n-Bu(4)NX (X = Cl, Br, I), and the trigonal bipyramidal structures have been confirmed by X-ray crystallography and/or EPR spectroscopy. The iodide complex easily liberates the iodide anion in acetonitrile forming the acetonitrile complex as a result. The EPR spectra of the complexes showed several superhyperfine structures that strongly indicated the presence of spin density on the halide ligands through the Cu-X bond. The results of DFT calculations essentially matched with the X-ray crystallographic and the EPR spectroscopic results. Cyclic voltammetry revealed a quasi-reversible reduction wave for Cu(II)/Cu(I) indicating a trigonal pyramidal coordination for Cu(I) states. A coincidence of the redox potential for all [CuX(tptm)](0/+) processes indicates that the main oxidation site in each complex is the tptm ligand.  相似文献   

14.
Far i.r. spectra are reported for 34 adducts of phosphine and amine bases with copper (I) halides in which the copper atom is coordinated to only one terminal halide. CuX stretching frequencies are assigned for all of the chloro complexes and for most of the bromo and iodo complexes. The CuX stretching frequencies have been found to depend primarily on the CuX̵ bond length, and appear to be relatively independent of the nature of the coordinating ligands. Best fit curves to the experimental data correspond to a dependence of ν(CuX) on the inverse nth power of r(CuX), where n is approximately equal to 5. Metal—halogen bond stretching force constants have been calculated for copper(I) and related silver(I) and gold(I) halide complexes assuming that the MX entity behaves as an uncoupled diatomic molecule. The results show that for three-coordinate copper(I) the force constants decrease in the order CuCl>CuBr>CuI and that the same trend is shown for four-coordinate copper(I) complexes, but the differences are considerably smaller than for the three-coordinate case. Analogous trends are found for the two- and three-coordinate gold compounds.  相似文献   

15.
The voltammetry of copper in organic ligand/chloride media is dominated by the formation of CuCl?2 species and by induced adsorption of Cu(I) in organic coatings on the electrodes. These phenomena are utilised in a novel method for evaluating Cu(II)/organic ligand interactions, based on the principle of ligand exchange. The Cu(II)/organic species competes with glycine which forms copper glycinate. These two complexes can be distinguished voltammetrically: copper glycinate gives a higher surface excess of copper at a gelatin-coated hanging mercury drop electrode, partly because of the increased production of CuCl?2 from copper glycinate at the electrode surface. The method proved satisfactory for pure ligand/surfactant/chloride media and for estuarine waters. It is shown that there are two type of Cu(II)-binding ligand in estuarine waters: humic material (> 10?6 mol l?1, assuming 1:1 site binding) with polyelectrolyte-type binding, and discrete ligands (? 10?6 M) with stability constants around 109. The extent of Cu(II) binding by the humic material decreases down the estuary because of dilution and increased salinity.  相似文献   

16.
The system Cu(II)Cu(I)Cu(0) in acidified thiocyanate medium was investigated at carbon, mercury, and copper amalgam electrodes using cyclic voltammetry, normal, differential and reverse pulse voltammetry, double potential step chronocoulometry, and exhaustive coulometry. Reduction of Cu(II) to Cu(I) on carbon electrodes proceeds quasireversibly. At moderate concentrations of Cu(II) and SCN? the reduction of Cu(II) leads to three-dimensional precipitation of CuSCN which can be deposited at the electrode surface. At high concentration of SCN? complexation dominates over precipitation and only soluble species are formed. At mercury and copper amalgam electrodes the situation is more complicated. The three- dimensional precipitation is preceded by strong thiocyanate-induced adsorption of Cu(I) which results in formation of a mono layer at potential well-separated from those where diffusing product is formed.  相似文献   

17.
The adsorption on Cu of the corrosion inhibitors benzotriazole (BTA), 2-mercaptobenzothiazole, 2-mercaptobenzimidazole and 2-mercaptobenzoxazole has been characterized in both neutral and acid chloride solutions using electrochemical techniques and surface enhanced Raman spectroscopy. The undissociated inhibitors and their anions are adsorbed simultaneously, the surface concentration ratio depending on the pH and electrode potential. At low pH, BTA is adsorbed weakly and it is displaced from surface sites by both Cl and the strongly adsorbed 2-mercaptobenzothiazole. These spectroscopic results explain the low corrosion inhibition due to BTA in acid solution.  相似文献   

18.
《Analytical letters》2012,45(8):1873-1896
Abstract

A flow system incorporating an amperometric glucose oxidase enzyme electrode has been used to study the inhibitory effects of 16 metal cations on glucose oxidase. Only copper(II), mercury(II) and silver(I) caused any significant inhibition. the enzyme electrode could be reactivated by EDTA, the reactivation being most effective for copper(II) and least so for silver(I). Other complexing agents were tried for reactivation but proved to be unsatisfactory.

The ability to reactivate the enzyme on the electrode following copper(II) inhibition, and the linear response of the system to the level of this inhibitor according to I/A = -9.49 × 10?7 log([Cu]/M) + 4.84 × 10?8; r = 0.994 between 2.5 × 10?4M and 5 × 10?3M [Cu]2+ indicates a prospect for the use of a flow system for determining enzyme inhibitors in samples.  相似文献   

19.
Pt‐nanoparticles were synthesized and introduced into a carbon paste electrode (CPE), and the resulting modified electrode was applied to the anodic stripping voltammetry of copper(II) ions. The synthesized Pt‐nanoparticles were characterized by cyclic voltammetry, scanning electron microscopy and X‐ray photoelectron spectroscopy techniques to confirm the purity and the size of the prepared Pt‐nanoparticles (ca. 20 nm). This incorporated material seems to act as catalysts with preconcentration sites for copper(II) species that enhances the sensitivity of Cu(II) ions to Cu(I) species at a deposition potential of ?0.6 V in an aqueous solution. The experimental conditions, such as, the electrode composition, pH of the solution, pre‐concentration time, were optimized for the determination of Cu(II) ion using as‐prepared electrode. The sensitivity changes on the different binder materials and the presence of surfactants in the test solution. The interference effect of the coexisted metals were also investigated. In the presence of surfactants, especially TritonX‐100, the Cu(II) detection limit was lowered to 3.9×10?9 M. However, the Pt‐nanoparticle modified CPE begins to degrade when the period of deposition exceeds to 10 min. Linear response for copper(II) was found in the concentration range between 3.9×10?8 M and 1.6×10?6 M, with an estimated detection limit of 1.6×10?8 M (1.0 ppb) and relative standard deviation was 4.2% (n=5).  相似文献   

20.
Abstrasct The effect of benzotriazole on the growth of anodic films on aluminium and an Al-3.5 wt% Cu alloy has been examined by transmission electron microscopy (TEM) and electrochemical impedance spectroscopy (EIS). Films grown to relatively high voltages reveal flaws and oxygen-filled voids as a result of the surface morphology and copper enrichment and oxidation at the alloy/film interface. Benzotriazole, apart from increasing the efficiency of anodic film growth on the artificially aged alloy, also reduces the population density of the local features. The impedance response of films formed at relatively low voltages has been used to probe the early influence of benzotriazole on the macroscopic surface as well as flaws of the oxide-covered substrate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号