首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Vibrational spectra were obtained for 2-chloro-2-methylpentane, 3-chloro-3-methylpentane, 2-chloro-2-methylhexane, and 3-chloro-3-methylhexane. All four compounds exist in THHH and TCHH conformations in the neat liquid, and the THHH' conformer of the last named compound also seems to be present. Only the THHH conformer is present in the crystalline state of the two pentanes, but the hexanes could not be made to crystallize and both conformers were present in the solid. A 44-parameter modified valence force field was used in normal coordinate calculations, with fifteen force constants being adjusted to fit 188 assigned frequencies below 1500 cm?1 of six molecules (two conformers each of 2-chloro-2-methylbutane, 2-chloro-2-methylpentane, and 3-chloro-3-methylpentane). The resulting force constant values were used in zero-order calculations of the two hexanes as an aid in interpreting vibrational spectra for those compounds.  相似文献   

2.
The conformational stability, barriers to internal rotation and vibrational frequencies of trivinylborane have been determined from the vibrational spectra and ab initio calculations. The ab initio calculations have been carried out utilizing the RHF/3-21G, RHF/6-31G*, and MP2/6-31G* basis sets and support the vibrational data that there are two stable conformations in the fluid phases separated by a relatively small energy difference. One of the conformations is a near-planar form which has the three vinyl groups twisted out of the BC3 plane and belongs to the C3 point group. The other conformer has a non-planar structure and belongs to the C1 point group. These and other calculated results are compared to the corresponding quantities obtained from the experiment.  相似文献   

3.
M(1,12-diaminododecane)Ni(CN)4.G (M = Co, Ni or Cd; G = chlorobenzene; 1,2-; 1,3- or 1,4- dichlorobenzene) clathrates were prepared in powder form for the first time and their infrared spectra were reported and then compared with M(1,10-diaminodecane)Ni(CN)4.1,5G (M = Co, Ni or Cd; G = chlorobenzene; 1,2-; 1,3- or 1,4-dichlorobenzene) clathrates. The spectral results suggest that the characteristic ν(CN) and δ(NiCN) frequencies are found to be similar to those known for the Hofmann type compounds, in that prepared compounds are similar in structure to this type compounds and their structures consist of polymeric layers [M–Ni(CN)4] with the 1,12-diaminododecane molecule bound to the metal atom (M). Also, the results suggest that the ligand molecule with 10 to 12 of chain length have no effect on vibrational bands of the guest molecules in the similar Hofmann-diam-type clathrates. The normal mode frequencies and corresponding vibrational assignments of chlorobenzene and 1,2-; 1,3- or 1,4-dichlorobenzene in the ground state were calculated by DFT/B3LYP level of theory using the 6-311G(d, p) basis set in Gauss-view. In addition, these theoretical results were compared to the experimental results for the vibrational modes of host molecules.  相似文献   

4.
The geometry, frequency, and intensity of the vibrational bands of imidazo[1,2-a]pyridine (which is abbreviated as impy) were obtained by the density functional theory (DFT) calculations with BLYP, B3LYP, and B3PW91 functionals and 6-31G(d) basis set. The optimized geometric bond lengths and bond angles are in good agreement with the available X-ray data. The infrared spectrum of imidazo[1,2-a]pyridine was computed by the DFT method in order to reproduce the vibrational wavenumbers and intensities with an accuracy, which allows reliable vibrational assignments. Total energy distribution and isotopic shifts have been calculated in order to help for the perfect assignment of the vibrational modes. The zinc halide complexes Zn(impy)2X2 [X = Cl, Br, and I] have also been synthesized. The compounds were characterized using the elemental analysis, FT-IR spectra, and quantum chemical calculations. The geometry optimization of Zn(impy)2X2 yields distorted tetrahedral environment around Zn ion.  相似文献   

5.
New Hofmann-ethanedithiol-type clathrates, M(1,2-Ethanedithiol)Ni(CN)4·Benzene (M=Cd,Co), have been obtained in the powdered form. By vibrational spectroscopy of these two new compounds, it is exhibited that their structures are similar to those of the other Hofmann-type clathrates.  相似文献   

6.
IR and Raman spectra have been obtained for 1,2-dichlorobutane and 1,2-dichloro- pentane. The butane crystallizes in the PXSXH conformation, but the pentane could not be made to crystallize. Normal coordinate calculations were made for the PXSXH, PCSHH, and PHSHH conformers of these two compounds and for 1,2-dichloropropane. The ob- served spectra were interpreted with the aid of these calculations, and it was concluded that all three conformers exist for each of these compounds. The force field that was obtained should be applicable to other 1,2-dichloroalkanes.  相似文献   

7.
The asymmetric torsional potential function, conformational energy difference, vibrational frequencies, and structural parameters of Cyclopropane-carboxaldehyde have been obtained from ab initio calculations at the 3–21G and/or 6-31G* baiss set levels. These results have allowed for a reinterpretation or clarification of some of the corresponding results obtained from experiment. The conformations that have the oxygen atom oriented cis and trans to the three-membered ring are observed and calculated to be the most stable and high energy forms in the gaseous phase, respectively. From the ab initio calculations using the 6–31 G* basis set, the energy difference between the two conformers is 114 cm–1. For the liquid, the trans conformer is more stable and is the only rotamer present in the annealed solid. Based on a combination of results obtained from ab initio calculations, microwave spectroscopy, and the electron diffraction technique,r o structural parameters have been obtained for both conformations.  相似文献   

8.
A general force field type of calculation has been devised in connection with MM3 to treat 1,2- and 1,4-diketones, both when they are not conjugated (as in derivatives of glyoxal) and when they are conjugated (as in derivatives of ortho- and para-benzoquinone). The molecular structures, moments of inertia, dipole moments, and vibrational spectra have been examined for about 15 compounds, some in several conformations. Ab initio calculations (6-31G*) have been used to determine quantities that have not been previously defined by experiment. In general, the force field permits the calculation of the structures with high accuracy, and the spectroscopic and conformational energy data with fair accuracy. © 1994 by John Wiley & Sons, Inc.  相似文献   

9.
The confromations of the unsaturated seven membered ring in 4,4,6,6-tetradeuterium-1,2-benzocycloheptene-(1) ( 1 ) and five benzocycloheptene derivatives were determined by NMR spectroscopy. For all investigated compounds at ?80°C only one conformer was present in detectable quantity. By analysis of the NMR data – molecular symmetry, coupling constants and chemical shift – it can be shown that the conformation is always the chair form. The free conformational enthalpy of both the other conformations with boat or twist form of the ring is for all six compounds more than 1.8 kcal/mole. The experimental results agree with those from model calculations: thus for benzocycloheptene, the 5,5-dimethyl derivative ( 2 ) and the 4,4,6,6-tetramethyl derivative ( 4 ) the lowest energy was found for the chair conformation; the second most stable conformations were found to be the boat for 1 and 4 , and the twist form for 2 .  相似文献   

10.
The structures and conformational stabilities of phenylphosphonic and phenylthiophosphonic acids are investigated using calculations mostly at the DFT/6-311G** level and ab initio ones at the MP2/6-311G** level (no frequency calculations in the latter case), because we know from our previous results that the addition of diffuse functions to a valence triple zeta basis with polarization functions might lead to an unbalanced basis set. Further, the experience tells that for large energy differences between conformers, DFT works very well. From the calculations the molecules are predicted to exist in a conformational equilibrium consisting of two non (near)-planar conformers that are identical by symmetry. Interestingly, in the internal rotation potential functions the planar conformer appears to be a stable minimum (also optimization converges to planar), however the vibrational frequencies were computed and the planar conformer exhibited an imaginary one, indicating that it is a maximum with respect to one of the internal coordinates. Only optimization without any restrictions and starting from a non (near)-planar structure converged to a real minimum with a non (near)-planar geometry. In the minimum structure, vibrational infrared and Raman spectra are calculated and those for phenylphosphonic acid are compared to experimental ones, showing satisfactory agreement. The rather low intensity of the OH bands in the experimental infrared spectrum (as compared to normal organic acids) indicates rather weak hydrogen bonding with at most dimers present. Normal coordinate calculations are carried out and potential energy distributions are calculated for the molecules in the non (near)-planar conformations providing a complete assignment of the vibrational modes to atomic motions in the molecules. From the rather low rotational barriers we conclude, in agreement with the results from the literature (for other P=O compounds) based on localized orbitals, that conjugation effects are absent — or at least negligible — as compared to electrostatic and steric ones.  相似文献   

11.
The molecular structures of a family of eight aminodifluorophosphines, (PF2)NRR'(R, R' = H, CH3, SiH3, GeH3, PF2), have been redetermined using gas-phase electron diffraction data and high-level ab initio molecular-orbital calculations. The SARACEN method has allowed the application of flexible restraints, giving greater accuracy and precision of structure, while the SHRINK program has allowed curvilinear corrections for vibrational effects to be applied to intramolecular distances. The more accurate structures of these eight compounds show consistent patterns of effects attributable to the various substituents, while conformations are dominated by the requirement that adjacent phosphorus and nitrogen lone pairs of electrons should be orthogonal.  相似文献   

12.
From detailed study of 1D and 2D NMR spectra of ten natural 1,2-epoxyguaianolides (bis-1,2:3,4-epoxyguaianolides and guaianolide-1,2-epoxychlorohydrins), we identified general spectral traits helpful for stereochemical assignment of such sesquiterpene lactones. We found that the chemical shifts of certain (1)H and (13)C nuclei are consistently dependent on the configuration of 1,2-epoxy-ring which could be used as a simple rule for establishing this configuration. Then, from 1D and 2D (COSY, NOESY, HMQC, HMBC) NMR data, applying the observed rule, the structure and stereochemistry of two new, diastereomeric guaianolide-1,2-epoxychlorohydrins, isolated from Achillea serbica, are determined. The NMR data, namely, nuclear overhauser enhancement (NOE) correlations, pointed out two conformations of guaianolide's cycloheptane ring. The semiempirical calculations (AM1 and PM3 methods), performed in order to gain additional information regarding conformations, resulted in three geometries of investigated lactones. Even so, the conformations derived from the NMR data agreed well with those calculated by semiempirical methods.  相似文献   

13.
Summary The study of CN bonding in cyano complexes from vibrational spectra can be carried out using a simplified model, the Cotton-Kraihanzel Force Field, giving results in good accord with those obtained by means of more rigorous and complex entangled calculations. Application of the model is also made to mixed cyano complexes for which rigorous force constants are not known, and a good predictive ability is found, particularly for [Pt(CN)5X]2– compounds.  相似文献   

14.
The title compound, C34H52O4, consists of five six‐membered rings. Barring the two rings, with double bonds, all other rings are in chair conformations. Mean‐plane and ring‐puckering calculations indicate these two rings to be in distorted‐chair conformations, with distortion towards the boat conformation. There are no strong hydrogen bonds and the structure is stabilized by van der Waals interactions only. The structure is compared with those reported for other triterpenes.  相似文献   

15.
The potential energy surfaces of four cyclic alkanes have been examined using molecular mechanics, semiempirical, and ab initio methods to determine if they produce mutually consistent results and investigate the source of any errors between the methods. The C5 ? C8 cyclic alkanes were chosen since these structures present a finite set of conformations and transition-state geometries and are still within the computational time and memory limits of the quantum mechanical approaches. We also examined several conformations of 1,2-dideoxyribose to determine the effect of heteroatoms on the results for the 5-membered ring. The molecular mechanics and ab initio calculations are consistent in the relative energies and geometries determined for the conformers of all ring systems. While the semiempirical calculations yielded geometries consistent with the other methods (except for 5-membered rings), the relative energies often deviated substantially. A decomposition analysis of the semiempirical and molecular mechanics energies revealed that the disparities are mainly due to errors in the 1-center energies of the semiempirical calculations. The 2-center bonding and nonbonding energies followed reasonable trends for the conformers. The core-repulsion function, however, is suspected of producing anomalies. A minimum in the attractive Gaussian of this term at 2.1 Å for H? H interactions partly explains the propensity of the 5-membered rings to optimize to near planarity (decreasing 1,2-diaxial hydrogen distances to 2.3 Å) and the underestimation of the relative energy of the boat structure of cyclohexane.  相似文献   

16.
Structural calculations by means of the density functional method have been performed on tetraoxaporphyrin dication and on isoelectronic diprotonated porphyrin as well as on the sulfur and carbon analogues of porphyrin. A detailed study of the stable conformations of these compounds is reported starting with the most symmetrical conformations and lowering the symmetry along the vibrational coordinates with imaginary frequency. The calculated geometries are related to experimental structures available from X-ray diffraction studies. The Raman spectra of tetraoxaporphyrin dication exciting with micro-Raman instrumentation at 785 nm and of diprotonated porphyrin in near-resonance conditions with the Soret band have been measured. The correlation between frequencies calculated with the DF/B3-LYP/cc-pVDZ procedure for porphyrin, diprotonated porphyrin, and tetraoxaporphyrin dication has allowed for making a vibrational assignment for the latter two systems in excellent agreement with experiment using a single frequency scale factor.  相似文献   

17.
We calculate the vibrational modes of four-membered rings family in the Si–O extended rocking infrared for vitreous SiO2 materials. In particular these species are obtained in the early stages of the sol–gel process. We have performed high quality quantum-mechanical calculations based on cluster models and gradient corrected density functional theory, (GC-DFT). Three possible configurations were obtained, a regular planar, a slightly deformed or quasi-planar, and a deformed ring. According to our result, the more probable one is the slightly deformed configuration. The calculated vibrational frequencies are compared with experimental IR and Raman results obtaining very good agreement. Also, we calculated geometries and vibrational frecuencies for three-membered rings. We found that 3- and 4-fold rings show evidence of decoupled vibrational modes, those modes are compared with a Raman spectrum obtaining very good coincidence.  相似文献   

18.
Large configuration interaction calculations of the proton—proton coupling constant for several geometrical configurations of the ammonia molecules are reported. The analytical expressions for the energy surface and the coupling constant as functions of two cartesian displacement coordinates are fitted to the calculated values. The potential is used for the calculation of the vibrational wavefunctions for 15NH3 and 15ND3 species and the vibrational averaging of the coupling constant is carried out using these functions. Though the value of the coupling constants shows a very strong geometry dependence, the vibrational corrections are found to be small. A possible correlation of the proton—proton coupling constant with an angular parameter in the NH2 group in RNH2 compounds is indicated.  相似文献   

19.
The vibrational spectra of crystalline 1,2-diiodobenzene are presented. Spectroscopic evidence in combination with packing and lattice frequence calculations point to a tetramolecular unit cell, space group C52h- Approximate molecular positions are given.  相似文献   

20.
Pseudopotentials and valence basis sets to be used in calculations for organometallic compounds of zinc and magnesium have been tested in calculations for the M(CH3)n (M = Zn, Mg; n = 1,2) molecules. Valence correlation effects are treated at the SDCI and CEPA levels. The capability of a polarization potential on zinc to account for the valence shell contracting effect of core valence correlation is studied. Properties considered are geometries, force constants, Mulliken populations, ionization potentials, atomization, and binding energies. Differences in bonding between the two dimethyl compounds are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号