首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A well-established generalization of graph coloring is the concept of list coloring. In this setting, each vertex v of a graph G is assigned a list L(v) of k colors and the goal is to find a proper coloring c of G with c(v)∈L(v). The smallest integer k for which such a coloring c exists for every choice of lists is called the list chromatic number of G and denoted by χl(G).We study list colorings of Cartesian products of graphs. We show that unlike in the case of ordinary colorings, the list chromatic number of the product of two graphs G and H is not bounded by the maximum of χl(G) and χl(H). On the other hand, we prove that χl(G×H)?min{χl(G)+col(H),col(G)+χl(H)}-1 and construct examples of graphs G and H for which our bound is tight.  相似文献   

2.
Use vi,κi,λi,δi to denote order, connectivity, edge-connectivity and minimum degree of a graph Gi for i=1,2, respectively. For the connectivity and the edge-connectivity of the Cartesian product graph, up to now, the best results are κ(G1×G2)?κ1+κ2 and λ(G1×G2)?λ1+λ2. This paper improves these results by proving that κ(G1×G2)?min{κ1+δ2,κ2+δ1} and λ(G1×G2)=min{δ1+δ2,λ1v2,λ2v1} if G1 and G2 are connected undirected graphs; κ(G1×G2)?min{κ1+δ2,κ2+δ1,2κ1+κ2,2κ2+κ1} if G1 and G2 are strongly connected digraphs. These results are also generalized to the Cartesian products of connected graphs and n strongly connected digraphs, respectively.  相似文献   

3.
关于笛卡尔乘积图的优美性   总被引:2,自引:0,他引:2  
研究了笛卡尔乘积图Pm×Pn×P1的优美标号算法,并且给出了他们都是优美图的证明,同时推广了笛卡尔乘积图Pm×Pn是优美图的结论.  相似文献   

4.
A labeling of a graph G is distinguishing if it is only preserved by the trivial automorphism of G. The distinguishing chromatic number of G is the smallest integer k such that G has a distinguishing labeling that is at the same time a proper vertex coloring. The distinguishing chromatic number of the Cartesian product is determined for all k and n. In most of the cases it is equal to the chromatic number, thus answering a question of Choi, Hartke and Kaul whether there are some other graphs for which this equality holds.  相似文献   

5.
The circular chromatic index of a graph G, written , is the minimum r permitting a function such that whenever e and are incident. Let □ , where □ denotes Cartesian product and H is an ‐regular graph of odd order, with (thus, G is s‐regular). We prove that , where is the minimum, over all bases of the cycle space of H, of the maximum length of a cycle in the basis. When and m is large, the lower bound is sharp. In particular, if , then □ , independent of m. © 2007 Wiley Periodicals, Inc. J Graph Theory 57: 7–18, 2008  相似文献   

6.
For each infinite cardinal κ, we give examples of 2κ many non‐isomorphic vertex‐transitive graphs of order κ that are pairwise isomorphic to induced subgraphs of each other. We consider examples of graphs with these properties that are also universal, in the sense that they embed all graphs with smaller orders as induced subgraphs. © 2003 Wiley Periodicals, Inc. J Graph Theory 43: 99–106, 2003  相似文献   

7.
8.
The critical group of a connected graph is a finite abelian group, whose order is the number of spanning trees in the graph, and which is closely related to the graph Laplacian. Its group structure has been determined for relatively few classes of graphs, e.g., complete graphs and complete bipartite graphs. For complete multipartite graphs , we describe the critical group structure completely. For Cartesian products of complete graphs , we generalize results of H. Bai on the k-dimensional cube, by bounding the number of invariant factors in the critical group, and describing completely its p-primary structure for all primes p that divide none of . © 2003 Wiley Periodicals, Inc. J Graph Theory 44: 231–250, 2003  相似文献   

9.
10.
We show that regular median graphs of linear growth are the Cartesian product of finite hypercubes with the two-way infinite path. Such graphs are Cayley graphs and have only two ends.For cubic median graphs G the condition of linear growth can be weakened to the condition that G has two ends. For higher degree the relaxation to two-ended graphs is not possible, which we demonstrate by an example of a median graph of degree four that has two ends, but nonlinear growth.  相似文献   

11.
An antimagic labeling of a finite undirected simple graph with m edges and n vertices is a bijection from the set of edges to the integers 1,…,m such that all n-vertex sums are pairwise distinct, where a vertex sum is the sum of labels of all edges incident with the same vertex. A graph is called antimagic if it has an antimagic labeling. In 1990, Hartsfield and Ringel [N. Hartsfield, G. Ringel, Pearls in Graph Theory, Academic Press, INC., Boston, 1990, pp. 108-109, Revised version, 1994] conjectured that every simple connected graph, except K2, is antimagic. In this article, we prove that a new class of Cartesian product graphs are antimagic. In particular, by combining this result and the antimagicness result on toroidal grids (Cartesian products of two cycles) in [Tao-Ming Wang, Toroidal grids are anti-magic, in: Proc. 11th Annual International Computing and Combinatorics Conference COCOON’2005, in: LNCS, vol. 3595, Springer, 2005, pp. 671-679], all Cartesian products of two or more regular graphs of positive degree can be proved to be antimagic.  相似文献   

12.
Let G be a graph and let Pm(G) denote the number of perfect matchings of G.We denote the path with m vertices by Pm and the Cartesian product of graphs G and H by G×H. In this paper, as the continuance of our paper [W. Yan, F. Zhang, Enumeration of perfect matchings of graphs with reflective symmetry by Pfaffians, Adv. Appl. Math. 32 (2004) 175-188], we enumerate perfect matchings in a type of Cartesian products of graphs by the Pfaffian method, which was discovered by Kasteleyn. Here are some of our results:1. Let T be a tree and let Cn denote the cycle with n vertices. Then Pm(C4×T)=∏(2+α2), where the product ranges over all eigenvalues α of T. Moreover, we prove that Pm(C4×T) is always a square or double a square.2. Let T be a tree. Then Pm(P4×T)=∏(1+3α2+α4), where the product ranges over all non-negative eigenvalues α of T.3. Let T be a tree with a perfect matching. Then Pm(P3×T)=∏(2+α2), where the product ranges over all positive eigenvalues α of T. Moreover, we prove that Pm(C4×T)=[Pm(P3×T)]2.  相似文献   

13.
This article proves the following result: Let G and G′ be graphs of orders n and n′, respectively. Let G* be obtained from G by adding to each vertex a set of n′ degree 1 neighbors. If G* has game coloring number m and G′ has acyclic chromatic number k, then the Cartesian product GG′ has game chromatic number at most k(k + m ? 1). As a consequence, the Cartesian product of two forests has game chromatic number at most 10, and the Cartesian product of two planar graphs has game chromatic number at most 105. © 2008 Wiley Periodicals, Inc. J Graph Theory 59: 261–278, 2008  相似文献   

14.
The distinguishing chromatic number of a graph, G, is the minimum number of colours required to properly colour the vertices of G so that the only automorphism of G that preserves colours is the identity. There are many classes of graphs for which the distinguishing chromatic number has been studied, including Cartesian products of complete graphs (Jerebic and Klav?ar, 2010). In this paper we determine the distinguishing chromatic number of the complement of the Cartesian product of complete graphs, providing an interesting class of graphs, some of which have distinguishing chromatic number equal to the chromatic number, and others for which the difference between the distinguishing chromatic number and chromatic number can be arbitrarily large.  相似文献   

15.
In this paper we examine the connections between equistable graphs, general partition graphs and triangle graphs. While every general partition graph is equistable and every equistable graph is a triangle graph, not every triangle graph is equistable, and a conjecture due to Jim Orlin states that every equistable graph is a general partition graph. The conjecture holds within the class of chordal graphs; if true in general, it would provide a combinatorial characterization of equistable graphs.Exploiting the combinatorial features of triangle graphs and general partition graphs, we verify Orlin’s conjecture for several graph classes, including AT-free graphs and various product graphs. More specifically, we obtain a complete characterization of the equistable graphs that are non-prime with respect to the Cartesian or the tensor product, and provide some necessary and sufficient conditions for the equistability of strong, lexicographic and deleted lexicographic products. We also show that the general partition graphs are not closed under the strong product, answering a question by McAvaney et al.  相似文献   

16.
Let G be a graph with vertex set V(G) and edge set E(G). A function f:E(G)→{-1,1} is said to be a signed star dominating function of G if for every vV(G), where EG(v)={uvE(G)|uV(G)}. The minimum of the values of , taken over all signed star dominating functions f on G, is called the signed star domination number of G and is denoted by γSS(G). In this paper, a sharp upper bound of γSS(G×H) is presented.  相似文献   

17.
18.
The packing chromatic number χρ(G) of a graph G is the smallest integer k such that the vertex set of G can be partitioned into packings with pairwise different widths. Several lower and upper bounds are obtained for the packing chromatic number of Cartesian products of graphs. It is proved that the packing chromatic number of the infinite hexagonal lattice lies between 6 and 8. Optimal lower and upper bounds are proved for subdivision graphs. Trees are also considered and monotone colorings are introduced.  相似文献   

19.
The generalized prism πG of G is the graph consisting of two copies of G, with edges between the copies determined by a permutation π acting on the vertices of G. We define a generalized Cartesian product that corresponds to the Cartesian product when π is the identity, and the generalized prism when H is the graph K2. Burger, Mynhardt and Weakley [A.P. Burger, C.M. Mynhardt, W.D. Weakley, On the domination number of prisms of graphs, Discuss. Math. Graph Theory 24 (2) (2004) 303-318.] characterized universal doublers, i.e. graphs for which γ(πG)=2γ(G) for any π. In general for any n≥2 and permutation π, and a graph attaining equality in this upper bound for all π is called a universal multiplier. We characterize such graphs.  相似文献   

20.
The domination numbers of cylindrical grid graphs   总被引:1,自引:0,他引:1  
Let γ(Pm □ Cn) denote the domination number of the cylindrical grid graph formed by the Cartesian product of the graphs Pm, the path of length m, m ? 2 and the graph Cn, the cycle of length n, n ? 3. In this paper, methods to find the domination numbers of graphs of the form Pm □ Cn with n ? 3 and m = 2, 3 and 4 are proposed. Moreover, bounds on domination numbers of the graphs P5 □ Cn, n ? 3 are found. The methods that are used to prove that results readily lead to algorithms for finding minimum dominating sets of the above mentioned graphs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号