首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 921 毫秒
1.
Trihalomethane concentrations are not typically monitored continuously in drinking water distribution systems. This means that data is not immediately available to operators so that they can make decisions that directly affect water quality. Monitoring data could be useful to researchers and operators who might want to better understand disinfection by-product formation and removal in their distribution systems. In this paper, a capillary membrane sampler (CMS), which uses a silicone membrane to directly sample trihalomethanes from a water sample, shows promise as a sampling device that can be used to introduce samples directly into a gas chromatograph for on-line monitoring. The construction, optimization, operation and evaluation of this capillary membrane sampling-gas chromatograph (CMS-GC) are discussed. The result of optimization, method detection limit, accuracy, precision and linearity studies are presented. Side-by-side studies have been done comparing the CMS-GC method to USEPA Method 502.2. While the CMS-GC method is not meant to replace USEPA Method 502.2, it does offer advantages for on-line monitoring and meets several of the criteria proposed as desirable for on-line monitoring of THM concentrations in drinking water distribution systems.  相似文献   

2.
An instrument designed for fully automated on-line monitoring of trihalomethane concentrations in chlorinated drinking water is presented. The patented capillary membrane sampling device automatically samples directly from a water tap followed by injection of the sample into a gas chromatograph equipped with a nickel-63 electron capture detector. Detailed studies using individual trihalomethane species exhibited method detection limits ranging from 0.01–0.04 μg L−1. Mean percent recoveries ranged from 77.1 to 86.5% with percent relative standard deviation values ranging from 1.2 to 4.6%. Out of more than 5200 samples analyzed, 95% of the concentration ranges were detectable, 86.5% were quantifiable. The failure rate was less than 2%. Using the data from the instrument, two different treatment processes were optimized so that total trihalomethane concentrations were maintained at acceptable levels while reducing treatment costs significantly. This ongoing trihalomethane monitoring program has been operating for more than ten months and has produced the longest continuous and most finely time-resolved data on trihalomethane concentrations reported in the literature.  相似文献   

3.
A laboratory-built automated instrument is reported for on-line, near real-time monitoring of nine haloacetic acids species (HAA9) in drinking water. The device uses anion-exchange chromatography to separate the HAA9 species, followed by post-column reaction with nicotinamide in basic solution with fluorescence detection. Method detection limits for HAA9 species ranged from 0.6 to 10.1 μg L−1, mean % recovery values ranged from 58 to 161%, and % relative standard deviation ranged from 3.5 to 32% while operating within a factor of 2.5-5 of the method detection limit. The bias between the proposed method and United States Environmental Protection Agency Method 552.3 was measured during two separate on-line studies and using grab samples collected from different distribution systems. In general, the two methods showed good agreement with biases for HAA9 of less than 10 μg L−1.  相似文献   

4.
A method using automated on-line solid phase extraction (SPE) directly coupled to liquid chromatography/tandem mass spectrometry (LC-MS/MS) has been developed for the analysis of six pharmaceuticals by isotope dilution. These selected pharmaceuticals were chosen as representative indicator compounds and were used to evaluate the performance of the on-line SPE method in four distinct water matrices. Method reporting limits (MRLs) ranged from 10 to 25 ng/L, based on a 1 mL extraction volume. Matrix spike recoveries ranged from 88 to 118% for all matrices investigated, including finished drinking water, surface water, wastewater effluent and septic tank influent. Precision tests were performed at 50 and 1000 ng/L with relative standard deviations (RSDs) between 1.3 and 5.7%. A variety of samples were also extracted using a traditional off-line automated SPE method for comparison. Results for both extraction methods were in good agreement; however, on-line SPE used approximately 98% less solvent and less time. On-line SPE coupled to LC-MS/MS analysis for selected indicators offers an alternative, more environmentally friendly, method for pharmaceutical analysis in water by saving time and costs while reducing hazardous waste and potential environmental pollution as compared with off-line SPE methods.  相似文献   

5.
A continuous-flow purge-and-trap-GC-MS system was developed for on-line monitoring of THMs (trihalomethanes) in drinking water. Three systems with different traps and purging flow-rates are discussed. In order to minimize interference from water vapor, total purge gas volume and injection temperature were controlled during analysis. Shorter sample concentration time and GC separation time reduced total cycle time to less than 5 min. The detection limits of the system could be lowered to 10 ppt, 25 ppt, 40 ppt, and 50 ppt (w/w) for CHCl3, CHCl2Br, CHClBr2, and CHBr3, respectively. This system could detect changes in sample concentration when applied to the on-line monitoring of THMs in drinking water.  相似文献   

6.
A method for measuring the concentrations of the five regulated haloacetic acids (HAA5) in drinking water is reported. This method uses ion chromatography to separate HAA5 species, followed by post-column reaction with nicotinamide and detection of the fluorescent products. The result of method detection limit, accuracy, precision, linearity and interference studies are reported. The on-line monitoring method is compared directly to USEPA 552.3 in Memphis drinking water. Though not meant to replace the USEPA 552.3 for compliance monitoring, the proposed method does offer attractive alternatives considering the ease of automation and application of on-line monitoring directly from drinking water distribution systems.  相似文献   

7.
The prevalence of water disinfection byproducts in drinking water supplies has raised concerns about possible health effects from chronic exposure to these compounds. To support studies exploring the relation between exposure to trihalomethanes (THMs) and health effects, we have developed an automated analytical method using headspace solid-phase microextraction coupled with capillary gas chromatography and mass spectrometry. This method quantitates trace levels of THMs (chloroform, bromodichloromethane, dibromochloromethane, and bromoform) and methyl tertiary-butyl ether in tap water. Detection limits of less than 100 ng/L for all analytes and linear ranges of three orders of magnitude are adequate for measuring the THMs in tap water samples tested from across the United States. THMs are stable for extended periods in tap water samples after quenching of residual chlorine and buffering to pH 6.5, thus enabling larger epidemiologic field studies with simplified sample collection protocols.  相似文献   

8.
Gas chromatographic equipment and procedures are described for automated splitless injection of pseudo-static headspace samples collected externally onto a sorbent trap. The GC microprocessor controls, in sequence, carrier gas backflushing of the sorbent trap for water removal, splitless thermal desorption into a cryogenically cooled wide bore (0.53 mm i. d.) capillary column and oven temperature programming. The method has been routinely applied for profiling the mid-to-high boiling compounds (bp 80–225°C) in the headspace of a variety of foods and beverages. Method criteria, advantages and limitations are discussed. FID and NPD chromatograms for brewed coffee and peanut butter volatiles are presented as typical examples.  相似文献   

9.
An analytical system composed of a cryofocusing trap injector device coupled to a gas chromatograph with mass spectrometric detection (CTI-GC–MS) specific for the on-line analysis in air of volatile chlorinated hydrocarbons (VCHCs) (dichloromethane; chloroform; 1,1,1-trichloroethane; tetrachloromethane; 1,1,2-trichloroethylene; tetrachloroethylene) was developed. The cryofocusing trap injector was the result of appropriate low cost modifications to an original purge-and-trap device to make it suitable for direct air analysis even in the case of only slightly contaminated air samples, such as those from remote zones. The CTI device can rapidly and easily be rearranged into the purge-and-trap allowing water and air analysis with the same apparatus. Air samples, collected in stainless steel canisters, were introduced directly into the CTI-GC–MS system to realize cryo-concentration (at −120 °C), thermal desorption (at 200 °C) and for the subsequent analysis of volatiles. The operating phases and conditions were customised and optimized. Recovery efficiency was optimized in terms of moisture removal, cold trap temperature and sampling mass flow. The injection of entrapped volatiles was realized through a direct transfer with high chromatographic reliability (capillary column–capillary column). These improvements allowed obtaining limits of detection (LODs) at least one order of magnitude lower than current LODs for the investigated substances. The method was successfully employed on real samples: air from urban and rural areas and air from remote zones such as Antarctica.  相似文献   

10.
The use of two automated sample preparation techniques, solid-phase microextraction (SPME) and purge and trap (P&T) systems are critically compared for the GC–MS determination of eight volatile organic compounds (VOCs), including trihalomethanes (THMs), in drinking water samples. Compounds chosen for the comparison are regulated by Spanish and European official guidelines for drinking waters. Experimental parameters investigated for the two sample preparation techniques included SPME type of fibers, SPME modality, P&T gas flow, extraction and desorption times and desorption temperatures. Thus, optimal experimental conditions have been worked out for the SPME and P&T techniques. Under such optimised conditions, detection limits, precision and accuracy were evaluated. Both methods fulfilled the values that the official guidelines establish. The P&T–GC–MS method offers LDs ranged from 0.004 to 0.2 ng mL−1, repeatabilities below 6% and recoveries between 81 and 117%; while LDs ranging from 0.008 to 0.7 ng mL−1, 1–12% R.S.D. and recoveries from 80 to 119% were achieved with the SPME–GC–MS method. Finally, we chose P&T–GC–MS method as the best for this determination and we validate this methodology by its application to the analysis of an Aquacheck Interlaboratory Exercise.  相似文献   

11.
Pyle SM  Sovocool GW  Riddick LA 《Talanta》2006,69(2):494-499
A new technique to analyze aqueous samples for nanograms per liter levels of volatile and semivolatile compounds using microextraction and thermal desorption into a gas chromatograph/ion trap mass spectrometer (GC/MS) is described. This method is inherently sensitive (50 mL of aqueous sample is extracted prior to each desorption), uses no solvents, and detects volatiles and semivolatiles in the same analysis. Aqueous standards and environmental samples are pumped through a length of porous-layer open-tubular capillary column, which is then thermally desorbed onto a 30 m × 0.25 mm i.d. analytical column interfaced to an ion trap mass spectrometer for subsequent separation and detection. Sharp chromatographic peaks and reproducible retention times (RT) were observed. Replicate injections of surrogates (n = 6) averaged 32.6% R.S.D. Analysis of domestic tap water detected 55 analytes, some at the low-nanograms per liter level, and detected 3 halogenated ethenes, not previously reported in drinking water. Analysis of an aqueous sample from a municipal ground water source detected the presence of numerous semivolatile compounds at trace-levels.  相似文献   

12.
The objective of this study was to develop and evaluate a simple miniaturized approach to gas chromatography termed supported capillary membrane sampling-gas chromatography on a valve (SCMS-GCOV). The prototype instrument uses a pulsed discharge photoionization detector (PDPID) as the GC detector. Two different analyzers were constructed. The first used a bench scale SCMS-GC. The second was a miniaturized SCMS-GCOV analyzer. The SCMS-GCOV analyzer was used to monitor the concentrations of trihalomethanes (THM4) in drinking water. Details are given for the construction of the SCMS-GC-PDPID and the SCMS-GCOV-PDPID analyzers. The results of method detection limit, accuracy and precision studies are reported for analysis of THM4 and are compared to other methods of THM4 analysis. Side-by-side comparison studies are conducted between the SCMS-GCOV and USEPA 502.2 with promising results.  相似文献   

13.
An analytical system composed of a purge-and-trap injection system coupled to gas chromatography with mass spectrometric detection (PTI-GC-MS) specific for the analysis of volatile chlorinated hydrocarbons (VCHCs) (chloroform; 1,1,1-trichloroethane; tetrachloromethane; 1,1,2-trichloroethylene; tetrachloroethylene) and trihalomethanes (THMs) (chloroform; bromodichloromethane; dibromochloromethane; bromoform) in water was optimised. Samples were purged and trapped in a cold trap (-100 degrees C) fed with liquid nitrogen (cryo-concentration). In order to make this method suitable also for only slightly contaminated waters, some modifications were made to PTI sample introduction, in order to avoid any air intake into the system. PTI, GC and MS conditions were optimised for halogenated compound analysis and limits of detection (LOD) were evaluated. The proposed method allows analysis of samples whose concentrations range from microg/L to ng/L. It is, therefore, applicable to drinking waters, in analyses required by law, and to slightly contaminated aqueous matrices, such as those found in remote areas, in environmental monitoring. Moreover, by changing cold trap temperature, even sparkling mineral waters can be analysed, thus avoiding CO2 interference during the cryo-concentration phase. Our method has been successfully used on real samples: tap water, mineral water and Antarctic snow.  相似文献   

14.
Sulfide and polysulfides are strong nucleophiles and reducing agents that participate in many environmentally significant processes such as the formation of sulfide minerals and volatile organic sulfur compounds. Their presence in drinking water distribution systems are of particular concern and need to be assessed, since these species consume disinfectants and dissolved oxygen, react with metal ions to produce insoluble metal sulfides, and cause taste and odour problems. The analysis of sulfide and polysulfides in drinking water distribution systems is challenging due to their low concentrations, thermal instability and their susceptibility to undergo oxidation and disproportionation reactions. This paper reports on the development and optimisation of a rapid, simple, and sensitive method for the determination of sulfide and polysulfides in drinking water distribution systems. The method uses methyl iodide to derivatise sulfide and polysulfides into their corresponding dimethyl(poly)sulfides, which are then extracted using solid-phase microextraction in the headspace mode and analysed by gas chromatography–mass spectrometry. Good sensitivity was achieved for the analysis of dimethyl(poly)sulfides, with detection limits ranging from 50 to 240 ng L−1. The method also demonstrated good precision (repeatability: 3–7%) and good linearity over two orders of magnitude. Matrix effects from raw drinking water containing organic carbon (3.8 mg L−1) and from sediment material from a drinking water distribution system were shown to have no interferences in the analysis of dimethyl(poly)sulfides. The method provides a rapid, robust, and reliable mean to analyse trace levels of sulfides and polysulfides in aqueous systems. The new method described here is more accessible and user-friendly than methods based on closed-loop stripping analysis, which have been traditionally used for the analysis of these compounds. The optimised method was used to analyse samples collected from various locations in a drinking water distribution system. Some of the samples were shown to contain inorganic polysulfides, and their presence was associated with high sediment density in the system and the absence of disinfectant residual in the bulk water.  相似文献   

15.
Nine volatile halogenated organic compounds (VHOCs), including four trihalomethanes (THMs), were determined in soils by capillary gas chromatography with microwave induced-plasma atomic emission spectrometry (GC-AED), using a purge-and-trap system (PT) for sample preconcentration. Analytes were previously extracted from the soil sample in methanol and the extract was preconcentrated before being chromatographed. Element-specific detection and quantification were carried out monitoring two wavelength emission lines, corresponding to chlorine (479 nm) and bromine (478 nm). Each chromatographic run took 21 min, including the purge step. The method showed a precision of 1.1-7.2% (R.S.D.) depending on the compound. Detection limits ranged from 0.05 to 0.55 ng ml−1, for chloroform and dichloromethane, respectively, corresponding to 3.3 and 36.0 ng g−1 in the soil samples. The chromatographic profiles obtained showed no interference from co-extracted compounds. Low levels of dichloromethane and chloroform ranging from 0.04 to 1.13 μg g−1 were found in samples obtained from small gardens irrigated with tap water. The method is reliable and can be used for routine monitoring in soil samples.  相似文献   

16.
Emmert GL  Cao G  Duty C  Wolcott W 《Talanta》2004,63(3):675-682
The objective of this study was to develop and evaluate a supported capillary membrane sampling-gas chromatography method for the analysis of trihalomethanes (THMs) in drinking water. The effects of experimental parameters, such as flow rate of carrier gas, water temperature, ionic strengths of solutions and transfer line temperature on the system performance were investigated. The results of method detection limit and accuracy and precision studies are reported.  相似文献   

17.
A direct aqueous SFE system designed to extract water samples contained in vials has been coupled on-line with a reverse phase LC–MS–MS system using a single 10-port valve. An SFE trap system using C1 stationary phase connected to a C18 analytical HPLC column enabled the SFE–LC–MS–MS analysis of three polyether ionophore antibiotics in water using a step gradient. A quantitative SFE–LC–MS–MS method has been developed whereby the progress of SFE can be monitored directly on-line such that ionophore recovery profile data from a single water sample can be obtained. Using a continuous direct aqueous SFE period of 75 min, the SFE–LC–MS–MS recoveries of the ionophores were: monensin 76.2% with RSD 4.1%, lasalocid 84.6% with RSD 3.8% and narasin 91.2% with RSD 3.2%. With positive ion electrospray ionization, the SFE–LC–MS–MS system using a 4 mL water sample provided multiple reaction monitoring (MRM) limits of detection for monensin and lasalocid each equivalent to 90 ng/L whereas 30 ng/L for narasin. A two-way valve controlling carbon dioxide distribution to the SFE vessel has provided a means for the initial investigation of the recovery of ionophore sodium salts from water using static SFE.  相似文献   

18.
Haloacetic acids (HAAs) are by-products of the chlorination of drinking water containing natural organic matter and bromide. A simple and sensitive method has been developed for determination of ten HAAs in drinking water. The pressure-assisted electrokinetic injection (PAEKI), an on-line enrichment technique, was employed to introduce the sample into a capillary electrophoresis (CE)–electrospray ionization–tandem mass spectrometry system (ESI-MS/MS). HAAs were monitored in selected reaction monitoring mode. With 3 min of PAEKI time, the ten major HAAs (HAA10) in drinking water were enriched up to 20,000-fold into the capillary without compromising resolution. A simple solid phase clean-up method has been developed to eliminate the influence of ionic matrices from drinking water on PAEKI. Under conditions optimized for mass spectrometry, PAEKI and capillary electrophoresis, detection limits defined as three times ratio of signal to noise have been achieved in a range of 0.013–0.12 μg L−1 for ten HAAs in water sample. The overall recoveries for all ten HAAs in drinking water samples were between 76 and 125%. Six HAAs including monochloro- (MCAA), dichloro- (DCAA), trichloro- (TCAA), monobromo- (MBAA), bromochloro- (BCAA), and bromodichloroacetic acids (BDCAA) were found in tap water samples collected.  相似文献   

19.
In this study, a procedure for the simultaneous determination in water of six estrogens (estradiol, estriol, estrone, ethynyl estradiol, mestranol, and diethylstilbestrol) and three progestogens (progesterone, norethindrone, and levonorgestrel), selected based on their abundance in the human body, their estrogenic potency, and the extent of their use in contraceptive pills, was developed. The procedure, based on the on-line solid-phase extraction (SPE) of the water sample and subsequent analysis by liquid chromatography/diode array detection (LC/DAD), allows for the monitoring of up to 16 samples in a completely automated, unattended way. The SPE experimental conditions were optimized and the polymeric cartridge PLRP-S selected out of four different cartridges evaluated. The chromatographic separation was carried out on a LiChrospher 100 RP-18 and detection was performed at 200, 225, and 240 nm. The applicability of the method to the analysis of various environmental water samples, including drinking water, groundwater, surface water and sewage treatment plant effluents, was evaluated. Method detection limits were in the range 10-20 ng/l. The method precision and accuracy were satisfactory with recovery percentages ranging from 96 to 111% and relative standard deviations lower than 3%. The technique is also considerably cheap, fast, and easy, and, therefore, very adequate for routing monitoring. To the authors' knowledge it constitutes the first work describing a fully automated, on-line methodology for the continuous monitoring of these compounds in water.  相似文献   

20.
New drinking water regulations require the monitoring of eight volatile organic compounds that have established maximum contaminant levels (MCLs) and 51 other volatile organics for which MCLs are not established. A laboratory analytical method (Method 524.2) for the determination of 58 of these compounds is investigated, and precision and accuracy data are obtained. The method uses a standard inert gas purge extraction, isolation of the volatile organics on a three-stage solid-phase trap, thermal desorption into a gas chromatograph, separation with a fused-silica capillary column, and identification and measurement with a relatively low cost, benchtop ion trap detector that functions as a mass spectrometer. At a concentration of 2 micrograms/L (2 parts per billion), the grand mean measurement accuracy for 54 compounds was 95% of the true value with a mean relative standard deviation (RSD) of 4%. At 0.2 micrograms/L (200 parts per trillion), the grand mean measurement accuracy for 52 compounds was 95% of the true value with a mean RSD of 3%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号