首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The diffusive gradients in thin films (DGT) technique, using a diffusive gel or a restrictive gel, was evaluated for the determination of labile inorganic and organic species of Al and Cu in model synthetic solutions and river water samples. Experiments were performed both in situ and in the laboratory. In the solutions containing Al ions, the major labile fraction consisted of inorganic species. The organic complex fractions were mainly kinetically inert. For the model Cu solutions, the most labile fraction consisted of inorganic species; however, significant amounts of labile organic complexes of Cu were also present. A comparison was made between the results obtained using restrictive gel DGT and tangential flow ultrafiltration (TF-UF). The Cu fraction determined by restrictive gel DGT (corresponding to the "free" ions plus the labile fraction of small molecular size complexes) was larger than that determined by TF-UF (corresponding to all small molecular size ions), suggesting that the techniques exhibited different porosities for discrimination of inorganic species. For the river water samples analyzed in the laboratory, less than 45% of the analytes were present in labile forms, with most being organic species. For the in situ measurements, the labile inorganic and organic fractions were larger than those obtained in the laboratory analyses. These differences could have been due to errors incurred during sample collection and storage. All results were consistent with those found using two different methods, namely, solid-phase extraction and the DGT technique employing the apparent diffusion coefficient.  相似文献   

2.
Total dissolved and labile concentrations of Cd(II), Cu(II), Ni(II) and Pb(II) were determined at six locations of the Bourgas Gulf of the Bulgarian Black Sea coast. Solid phase extraction procedure based on monodisperse, submicrometer silica spheres modified with 3-aminopropyltrimethoxysilane followed by the electrothermal atomic absorption spectrometry (ETAAS) was developed and applied to quantify the total dissolved metal concentrations in sea water. Quantitative sorption of Cd, Cu, Ni and Pb was achieved in the pH range 7.5–8, for 30?min, adsorbed elements were easily eluted with 2?mL 2?mol?L?1 HNO3. Since the optimal pH for quantitative sorption coincides with typical pH of Black Sea water (7.9–8.2), on-site pre-concentration of the analytes without any additional treatment was possible. Detection limits achieved for total dissolved metal quantification were: Cd 0.002?µg?L?1, Cu 0.005?µg?L?1, Ni 0.03?µg?L?1, Pb 0.02?µg?L?1 and relative standard deviations varied from 5–13% for all studied elements (for typical Cd, Cu, Ni and Pb concentrations in Black Sea water). Open pore diffusive gradients in thin films (DGT) technique was employed for in-situ sampling and pre-concentration of the sea water and in combination with ETAAS was used to determine the proportion of dynamic (mobile and kinetically labile) species of Cd(II), Cu(II), Ni(II) and Pb(II) in the sea water. Obtained results showed strong complexation for Cu and Pb with sea water dissolved organic matter. The ratios between DGT-labile and total dissolved concentrations found for Cu(II) and Pb(II) were in the range 0.2–0.4. For Cd and Ni, these ratios varied from 0.6 to 0.8, suggesting higher degree of free and kinetically labile species of these metals in sea water.  相似文献   

3.
Concentrations of Cd, Cu, Cr, Pb, Ni and Zn were monitored in the Svitava River (the Czech Republic) during April and September 2005. Total concentrations and total dissolved concentrations were obtained through regular water sampling, and the diffusive gradients in thin films technique (DGT) were used to gain information on the kinetically labile metal concentrations. Each measured concentration was compared with the corresponding average (bio)available concentration calculated from the mass of metal accumulated by the moss species Fontinalis antipyretica. The concentrations of Cd, Pb, Cr and Zn measured using DGT corresponded well with those obtained after the deployment of Fontinalis antipyretica moss bags in the Svitava River, but the concentrations of Cu and Ni did not. The calculated (bio)available Cu concentration correlated well with the total dissolved concentration of Cu, whereas no correlation was found to exist between the concentrations of Ni. Scheme of the Svitava River monitoring station, including the DGT sampling units and Fontinalis antipyretica moss bags Electronic supplementary material Supplementary material is available in the online version of this article at and is accessible for authorized users.  相似文献   

4.
To rapidly discriminate dissolved labile and stable organic-complexed metal ions, a fully automated approach comprising a photocatalyst-assisted digestion reactor (PADR), a non-functionalized poly(methyl methacrylate) (PMMA) solid-phase extraction (SPE) column, and inductively coupled plasma-mass spectrometry (ICP-MS) instrumentation was developed. To separate labile dissolved metals from other concomitant metal complexes, a non-functionalized PMMA bead was used as the SPE adsorbent because of its selective interaction with labile metal ions. The PMMA SPE–ICP-MS hyphenated system was optimized, and its analytical reliability was confirmed by using it to analyze the certified reference material—NIST 1643e (artificial saline water). Detection limits (σ = 3, n = 7) for all analyte ions (Ni, Cu, Zn, Cd, and Pb), which ranged from 0.005 to 0.186 μg L− 1, could be reached; therefore, this technique appeared uniquely suited to determining levels of trace elements in most natural freshwater samples. To determine the total quantity of dissolved metals, a new digestion reactor (PADR) was developed for online conversion of metal–organic complexes to their labile forms. Compared to conventional photolysis methods, the digestion time improved considerably and the digestion efficiency for organic substances was excellent (> 90%) in the PADR format, with a very short resident time of 10 min. After construction of the PADR–PMMA SPE–ICP-MS hyphenated system, the speciation potential of our developed method was evaluated by analyzing three intentionally contaminated water samples. Results indicated that our developed hyphenated system is effective for online determination of total, labile, and metal–humic complexes in freshwater samples and that is capable of providing representative metal speciation patterns for different aquatic systems.  相似文献   

5.
Saccharomyces cerevisiae immobilized in agarose gel is proposed as a binding agent for the diffusive gradients in thin films (DGT) technique for determination of Pb in river water and seawater. DGT samplers were assembled with the proposed binding agent (25-mm disk containing 20%, m/v, S. cerevisiae and 3.0%, m/v, agarose) and a diffusive layer of cellulose (3MM Chr chromatography paper of 25-mm diameter). The effects of some DGT parameters (e.g., immersion time, ionic strength, and pH) were evaluated. Elution of Pb from the binding agent was effectively done with 1.75 mol L(-1) HNO(3). The deployment curve (between 2 and 24 h) was characterized by a significant uptake of Pb (346 ng Pb h(-1)) and good linear regression (R(2) = 0.9757). The experimental results are in excellent agreement with the predicted theoretical curve for mass uptake. Consistent results were found for solutions with ionic strengths of 0.005 mol L(-1) or greater and within a pH range of 4.5-8.5. Interferences from Cu (20:1), Mn (20:1), Fe (20:1), Zn (20:1), Ca (250:1), and Mg (250:1) in Pb retention were negligible. Determination of Pb in spiked river water samples (from the Corumbataí and Piracicaba rivers) performed using the proposed device was in agreement with total dissolved Pb, whereas measurements in seawater suggest that of the various species of Pb present in the samples, only cationic Pb species are adsorbed by the agarose-yeast gel disks. The in situ concentration of Pb obtained at two different sites of the Rio Claro stream (Corumbataí basin) were 1.13 ± 0.01 and 1.34 ± 0.04 μg L(-1). For 72-h deployments, a detection limit of 0.75 μg L(-1) was calculated. The combination of inductively coupled plasma optical emission spectroscopy and in situ deployments of DGT samplers during the 72-h period makes possible the determination of labile Pb in river water.  相似文献   

6.
Metal toxicity is not related to the total metal ion concentration, but to those of some specific Cu(II) species. The Permeation Liquid Membrane technique is based on the carrier-mediated transport of the test metal across a hydrophobic membrane and enables discrimination between various trace metal species in solution. The present work shows how the labile and inert Cu(II) complexes can be determined selectively, by varying the flow-rate of the test solution, in a flow-through cell. A mathematical model of metal flux through the PLM, based on diffusion-limited transport under steady-state conditions, is described. The model and the performance of the technique were studied in well-defined synthetic solutions containing simple organic hydrophilic ligands forming either inert (nitrilotriacetic acid), or labile complexes with Cu(II) (tartaric acid, malonic acid). The results were compared with theoretical predictions of thermodynamic species distribution in solution. Uncertainties on stability constants for copper speciation calculation were taken into account. The detection limits of the device are discussed. This work demonstrates that the flow-through cell is a reliable tool for copper speciation measurements in natural waters.  相似文献   

7.
ABSTRACT

Guanidinylated carboxymethyl chitosan (GCMCS) was prepared via the guanidinylation of carboxymethyl chitosan (CMCS). A device employing the diffusive gradients for thin films (DGT) technique was made using a GCMCS aqueous solution as the binding agent and a cellulose acetate dialysis membrane (CADM) as the diffusion phase to measure labile Cu2+, Pb2+ and Cd2+ in water. The percentage uptake (U%) values of labile Cu2+, Pb2+ and Cd2+ in a synthetic water sample were almost consistent with the theoretical values at 101.6 ± 2.8%, 104.6 ± 6.1% and 95.9 ± 4.4%, respectively. The optimum pH ranges for the measurement of labile Cu2+, Pb2+ and Cd2+ were 3.0–7.0, 3.0–7.0 and 4.0–8.0, respectively. The ionic strength mainly affected the diffusion of metal ions in the CADM. The diffusion rates decreased with increasing concentrations of NaNO3 solutions. The application of GCMCS-DGT in natural water and industrial wastewater showed that dissolved organic carbon (DOC) only affects metal species, and the accurate determination of labile Cu2+, Pb2+ and Cd2+ can be achieved when the diffusion coefficients of these metal ions in the diffusion phase have been determined. GCMCS is suitable for DGT application as a chelating agent for metal ions.  相似文献   

8.
《Analytical letters》2012,45(7):1224-1241
The combined use of a competing ligand exchange (CLE) method and a diffusive gradient in thin films (DGT) technique in a quasi-labile system provides a better understanding of dynamic metal (Cu and Ni) complexes in the presence of humic substances of different origins. The CLE and DGT techniques provide total labile (dynamic) metal complexes (Cu and Ni) and their dissociation rate constants in environmental systems. DGT was found to estimate lower concentrations of labile metal complexes than CLE. These discrepancies were caused by diffusion controlled metal flux (towards the binding resin gel) in the diffusive gel of DGT. The interactions of Cu and Ni with humic acids are stronger than their interactions with fulvic acid and natural organic matter. Changes in the lability of Ni and Cu complexes (complexed with humic substances of different origins) with the changing analytical detection window indicate that the complexes of these metals were formed with different binding sites with diverse binding energies in the humic substances. The combination of these two techniques was found to be very useful in determining diffusion coefficients of labile metal-humate complexes in quasi-labile systems. The values of diffusion coefficients of labile Ni and Cu complexes determined in this study are in good agreement with limited results from the literature. This finding is novel and can be very useful in further improving our understanding of the metal-humate interactions in natural environments.  相似文献   

9.
In situ measurements of copper and zinc using diffusive gradients in thin films (DGT) in two distinct natural water systems were compared to metal speciation assessed by competitive ligand exchange (CLE) and voltammetric measurements. In a dynamic river system, where dissolved metal concentrations vary significantly over short-time periods, DGT technique provided averaged values of the metal concentrations over time. In microcosms, at different total dissolved concentrations of copper and zinc, DGT technique measured a similar fraction as measurements of labile metal performed by voltammetry. The proportion of DGT and voltammetric-labile zinc to dissolved zinc was 61±4% and, respectively, 76±9%. DGT technique was measuring 81±8% of exchangeable copper (by exchange with catechol). These two fractions were similarly influenced by the addition of NTA. In the absence of NTA, copper measured by DGT represented 34±4% of dissolved copper whereas in the presence of NTA, this proportion raised to 57±2%. These measurements were compared to calculations performed with speciation programs using several models for the complexation by humic and fulvic substances, namely Model VI (WHAM), NICA-Donnan and SHM. The predicted speciation by these three models was similar. The prediction of free zinc ion and labile zinc concentrations were in agreement with experimental data. Calculated concentrations of free copper ion were overestimated because these models are not considering strong specific copper-binding ligands probably present in natural water.  相似文献   

10.
The diffusive gradients in thin films technique (DGT) was used to measure depth profiles of mercury in river and marine sediments in situ to a spatial resolution of 0.5 cm. Agarose gel was used as the diffusive gel in the DGT probes. Two different selective resins—Chelex 100 with iminodiacetic groups and Spheron-Thiol with thiol groups incorporated in the polyacrylamide resin gel—were tested. The different capture efficiencies of the two adsorbents enabled the fractions of mercury bound in different species in sediment pore water to be estimated. Mercury concentrations obtained by DGT with Spheron-Thiol resin were very similar to those obtained after centrifugation. This indicates that DGT with Sheron-Thiol resin reports on total dissolved mercury levels. The concentration of mercury measured by DGT with Chelex-100 resin was much lower (by a factor of 5–20) for the same sediment samples. Chelex-100 does not have such a high affinity to mercury as Spheron-Thiol, and so it only reports on the content of labile mercury species, such as inorganic ions and weak complexes. The content of labile mercury species in the river sediment was approximately 20% of the total dissolved mercury in pore water, whereas in marine sediment only 7% of the mercury was present as labile species.  相似文献   

11.
Since its invention in the mid-1990s, the diffusive gradients in thin films (DGT) technique has rapidly become one of the most promising in situ sampling techniques for trace metal measurement in natural waters. We investigated here the possibility of using DGT devices with different binding phases to determine different DGT labile fractions of Cd and Cu in laboratory solutions and in natural waters. Several binding phases were studied, including conventional Chelex 100 resin imbedded polyacrylamide hydrogel (Chelex) and several recently developed binding phases, poly(acrylamide-co-acrylic acid) (PAM-PAA) gel, poly(acrylamidoglycolic acid-co-acrylamide) (PAAG-PAM) gel, Whatman P81 cellulose phosphate ion-exchange membrane (P81), and poly(4-styrenesulfonate) (PSS) aqueous solution. Laboratory testing in metal solutions spiked with EDTA or humic acid suggested that all the DGT devices measured only free metal ions and inorganic metal complexes. Upon field testing at both freshwater and seawater sites it was found that the DGT labile metal concentrations measured by different binding phases can be significantly different, suggesting that the DGT labile metal fractions were dependent on binding strength of the binding phase. By designing binding phases that can compete with different natural water complexing ligands to varying extents, it is possible to use these different DGT devices to measure metal speciation in natural waters.  相似文献   

12.
The diffusive gradients in thin film technique (DGT) was used for characterization of South Moravian arable soils (sampling sites Zlín, Tuřany, and Chrlice) amended by sewage sludge in the 1980s. Two types of polyacrylamide diffusive gel with different pore size (APA gels—cross-linked with agarose and RG gels—cross-linked with bis-acrylamide) were employed. The (bio)available parts of Cd, Cu, and Ni and the proportions of inorganically and organically complexed species of these metals were assessed. The degree of metal resupply from the soil solid phase to the soil solution was also determined. Metal concentrations obtained by the DGT technique were lower by almost 4 to 5 orders of magnitude in comparison with those obtained by extraction with aqua regia. DGT concentrations of metals were also lower by approximately 1 to 2 orders of magnitude in comparison with those obtained by extraction with sodium nitrate (commonly used for assessment of the (bio)available part of metals). Results obtained by DGT measurement were expected to be closer to the actual content of available metal species than results obtained by extraction with sodium nitrate. Using RG gels together with APA gels provided resolution of inorganically and organically complexed metal species and their proportional representation. Inorganic metal species (particles smaller than 1 nm) formed a predominant part of assessed metal content in all studied soil samples and horizons. However, there was the exception of the cadmium content in the middle profile of Chrlice sandy soil sample. Ratio R values indicated that resupply of Cd, Cu, and Ni from the solid phase to the soil solution varied for individual soil samples and individual depth profiles. Mobile and labile species of Cd, Cu, and Ni were much more closely related to upper rather than deeper horizons. This observation correlates very well with the mechanical treatment and amendment of the studied soils.  相似文献   

13.
The diffusive gradients in thin films (DGT) technique, utilizing an iron-hydroxide adsorbent, has been investigated for the in situ accumulation of total dissolved inorganic As in natural waters. Diffusion coefficients of the inorganic As(V) and As(III) species in the polyacrylamide gel were measured using a diffusion cell and DGT devices and a variety of factors that may affect the adsorption of the As species to the iron-hydroxide adsorbent, or the diffusion of the individual As species, were investigated. Under conditions commonly encountered in environmental samples, solution pH and the presence of anions, cations, fulvic acid, Fe(III)-fulvic acid complexes and colloidal iron-hydroxide were demonstrated not to affect uptake of dissolved As. To evaluate DGT as a method for accumulation and pre-concentration of total dissolved inorganic As in natural waters, DGT was applied to two well waters and a river water that was spiked with As. For each sample, the concentration obtained with use of DGT followed by measurement by hydride generation atomic absorption spectrometry with a Pd modifier (HG-AAS) was compared with the concentration of As measured directly by HG-AAS. The results confirmed that DGT is a reliable method for pre-concentration of total dissolved As.  相似文献   

14.
The diffusion gradients in thin films (DGT) method was investigated and used to measure trace metal concentrations in river water. The principle of DGT is that trace metal ions diffuse through a thin polyacrylamide gel film (the diffusion gel layer) and are subsequently immobilised and concentrated on a layer of Chelex-100 resin embedded in another polyacrylamide gel film (the resin gel layer). These layers are mounted in a plastic holder, which exposes a fixed area of the diffusion gel layer to the water being monitored. Replacement of the normal agarose cross-linked diffusion gel with bisacrylamide cross-linked gel altered the ion uptake properties of DGT. The bisacrylamide cross-linked gel weakly, and with little selectivity, bound metal ions prior to their irreversible binding to Chelex-100. Trace metal ion uptake by these DGT devices was thus dependent on ionic strength and temperature, although the ionic strength effect is relatively small for most natural waters and negligible in sea water. The concentrations of Cd, Co, Cu, Ni, Pb, and Zn in the Water of Leith, an urban stream in Dunedin, New Zealand, were measured by DGT and the results compared with total dissolved concentrations of these metals measured in conventional (bottle) samples collected in parallel with the DGT monitoring. Greater than 90% of the total dissolved Cd and Zn; 20-40% of the total dissolved Co, Ni, and Pb; and 5% of the total dissolved Cu was available to the DGT method.  相似文献   

15.
Past and present data on the concentration and speciation of metals (Al, Fe, Cu, Zn, Pb, Cr, Cd, Mo, Ni) in the Kiliya Danube delta have been generalized, and variations in their concentrations have been compared. It has been shown that the highest pollution of the Danube lower reach has occurred from the second half of 1980s to the first half of 1990s due to intensive anthropogenic impact on the river delta ecosystem. Subsequently, decrease of the metal concentration was observed as a result of industrial crisis in the late 1990s–early 2000s. The major part of metals is transferred by water flow in the form of suspended solids, which is related to their relatively high content in water of the Kiliya part of the Danube delta. The results of studying dissolved metal species, in particular the ratio of the labile fraction that is potentially toxic to hydrobionts and complexes with dissolved organic matter, have been discussed. Data on the distribution of metals among complexes with dissolved organic substances of different chemical natures and molecular weights are given. Humic substances have been shown to contribute most to the complexation. Compounds with molecular weights of 1 to 5 and less than 1 kDa constitute the major part of anionic metal complexes with humic substances.  相似文献   

16.
Binding of metals in typical bath peat samples ("Grosses Gifhomer Moor", Sassenburg/North Germany) and their aqueous extracts was characterized by means of a multi-method approach. For that purpose a sequential extraction procedure based on peat-filled chromatography columns was developed. Water-soluble metal and DOM (dissolved organic matter) fractions were subdivided by use of a stepwise increased pH gradient (pH 3.8-5), finally by the chelator EDTA and 0.1 mol L(-1) hydrochloric acid. Metal fractions very strongly bound to peat were assessed by an aqua regia extraction. Metal determinations required were performed by atomic spectrometry methods (AAS, ICP-OES, and TXRF). The metal and DOM concentrations in the peat extracts varied significantly, depending on the natural variety of the peat matter under study (e.g., Al: 25-674, Cd: 0.05-0.2, Cu: 5-15.4, Fe: 77-1785, Mn: 21-505, Ni: 2-33, Pb: < 1, Zn: 9-715 (microg L(-1)); Na: 8-45, K: 1.3-14.9, Ca: 2-51, Mg: 1.1-7.9 (mg L(-1)); 26-73 mg L(-1) DOC). An increase of the pH increased the DOC (dissolved organic carbon) of the peat extracts, but hardly the concentration of heavy metals. The latter could only be re-mobilized by EDTA and dilute hydrochloric acid. Additional investigations of the peat extracts using tangential-flow ultrafiltration revealed that the heavy metals extracted at pH < 4 were predominantly dissociated. At higher pH (pH > 4.5) they were preferentially bound to macromolecular DOM. Moreover, using multistage ultrafiltration the size distribution of the DOM and their metal species was assessed.  相似文献   

17.
Chen H  Sun T  Sui D  Dong J 《Analytica chimica acta》2011,698(1-2):27-35
Cellulose acetate dialysis membrane (CDM) has been used in the diffusive gradients in thin films (DGT) technique, where accurate diffusion coefficients are essential for the assessment of the concentrations of labile metal in solution. Effective concentration difference model (ECDM), based on the assumption that the effective diffusion coefficient of metal ion in the dialysis membrane is determined by the effective concentration difference (ΔC(e)) across the dialysis membrane, is proposed and applied to study the effect of ionic strength, binding agent, ligands and Donnan potential on the effective diffusion coefficient. The effective diffusion coefficients of Cd(2+) through the dialysis membrane immersed in receptor solutions with binding agent were almost the same as those in receptor solutions without binding agent at higher ionic strengths (0.01-1 M) but much higher than those at lower ionic strengths (0.001-0.0001 M). The effective diffusion coefficients of Cd(2+) through the dialysis membrane immersed in deionized water receptor solutions with binding agent were not significantly different from those in synthetic receptor solutions (receptor solutions with various ionic strengths) with binding agent. The DGT-labile fractions were measured in synthetic solutions and natural waters, which indicated that the effective diffusion coefficients, through the dialysis membrane immersed in the deionized water solution with binding agent as receptor solution and in the spiked natural water as source solution, were more suitable for DGT application.  相似文献   

18.
Docekalová H  Divis P 《Talanta》2005,65(5):1174-1178
The diffusive gradient in thin films (DGT) technique was investigated and used to measure mercury concentration in river water. Mercury ions are covalently bound to amide nitrogen groups of commonly used polyacrylamide, which makes this gel unsuitable as a diffusive medium. In contrast, agarose gel was found as the diffusive gel for mercury measurements. Basic performance tests of agarose DGT verified the applicability of Fick's first law for DGT measurements. Two selective resins, Chelex-100 with iminodiacetic groups and Spheron-Thiol with thiol groups were used. The measured diffusion coefficient in agarose gel was close to that in water. The concentration of mercury in Svitava river measured by DGT with Speron-Thiol resin gel was higher (0.0116 ± 0.0009 μg l−1) than those obtained by Chelex-100 (0.0042 ± 0.0005 μg l−1). Different capture efficiencies of two adsorbents enable to estimate fractions of mercury bonded in different complexes in the river water. The concentrations of mercury found by DGT both Chelex-100 and Speron-Thiol resin gels are much lower than that measured directly in the river water (0.088 ± 0.012 μg l−1). This difference indicates that DGT concerns inorganic ions and labile species only, and that it is not able to include inert organic species and colloids.  相似文献   

19.
D. Point  G. Bareille  C. Belin 《Talanta》2007,72(3):1207-1216
An integrated approach for the accurate determination of total, labile and organically bound dissolved trace metal concentration in the field is presented. Two independent automated platforms consisting of an ultraviolet (UV) on-line unit and a chelation/preconcentration/matrix elimination module were specifically developed to process samples on-site to avoid sample storage prior to inductively coupled plasma mass spectrometry (ICP-MS) analysis. The speciation scheme allowed simultaneous discrimination between labile and organic stable dissolved species of seven trace elements including Cd, Cu, Mn, Ni, Pb, U and Zn, using only 5 ml of sample with detection limits ranging between 0.6 ng l−1 for Cd and 33 ng l−1 for Ni. The influence of UV photolysis on organic matter and its associated metal complexes was investigated by fluorescence spectroscopy and validated against natural samples spiked with humic substances standards. The chelation/preconcentration/matrix elimination procedure was validated against an artificial seawater spiked sample and two certified reference materials (SLRS-4 and CASS-4) to ensure homogenous performance across freshwater, estuarine and seawater samples. The speciation scheme was applied to two natural freshwater and seawater samples collected in the Adour Estuary (Southwestern, France) and processed in the field. The results indicated that the organic complexation levels were high and unchanged for Cu in both samples, whereas different signatures were observed for Cd, Mn, Ni, Pb, U and Zn, suggesting organic ligands of different origin and/or their transformation/alteration along estuarine water mixing.  相似文献   

20.
This paper reports the results of an investigation on the performance of the Diffusive Gradient in Thin Films (DGT) Technique in speciation of metals in aqueous samples of municipal wastes and mine effluents. The DGT was assessed regarding its suitability for in situ determination of metal speciation in municipal wastes and aqueous mine effluents. As the thickness of the diffusive gel layer of the DGT was increased to 0.40, 0.80, and 1.60 mm, a decrease in the amount of accumulated metal mass was observed for most of the metals studied in all the effluent samples. However, the results were different from one field-study site to another. Effect of kinetics also was observed in the amount of accumulated metal mass by the DGT. The computer speciation code, Windermere Humic Aqueous Model (WHAM VI), was used to predict the metal speciation of Cd, Cu, Ni, Pb, Co, and Zn, and WHAM predictions were compared with those of the experimentally determined metal speciation by the DGT technique (free and labile metal ions). This comparison showed good similarities between the theoretically predicted WHAM VI values and the experimentally measured values by DGT. The DGT technique was found to be simple and useful for investigating chemical speciation of trace metals in aqueous samples of municipal wastes and aqueous mine effluents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号