首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this study, we developed a fluorescence assay for the highly sensitive and selective detection of Hg2+ and Pb2+ ions using a gold nanoparticle (Au NP)-based probe. The Hg–Au and Pb–Au alloys that formed on the Au NP surfaces allowed the Au NPs to exhibit peroxidase-mimicking catalytic activity in the H2O2-mediated oxidation of Amplex UltraRed (AUR). The fluorescence of the AUR oxidation product increased upon increasing the concentration of either Hg2+ or Pb2+ ions. By controlling the pH values of 5 mM tris–acetate buffers at 7.0 and 9.0, this H2O2–AUR–Au NP probe detected Hg2+ and Pb2+ ions, respectively, both with limits of detection (signal-to-noise ratio: 3) of 4.0 nM. The fluorescence intensity of the AUR oxidation product was proportional to the concentrations of Hg2+ and Pb2+ ions over ranges 0.05–1 μM (R2 = 0.993) and 0.05–5 μM (R2 = 0.996), respectively. The H2O2–AUR–Au NP probe was highly selective for Hg2+ (>100-fold) and Pb2+ (>300-fold) ions in the presence of other tested metal ions. We validated the practicality of this simple, selective, and sensitive H2O2–AUR–Au NP probe through determination of the concentrations of Hg2+ and Pb2+ ions in a lake water sample and of Pb2+ ions in a blood sample. To the best of our knowledge, this system is the first example of Au NPs being used as enzyme-mimics for the fluorescence detection of Hg2+ and Pb2+ ions.  相似文献   

2.
Yu Y  Lin LR  Yang KB  Zhong X  Huang RB  Zheng LS 《Talanta》2006,69(1):103-106
A novel and simple fluorophore, p-dimethylaminobenzaldehyde thiosemicarbazone (DMABTS), was prepared in order to find available fluorescent chemosensor for mercuric ion in aquesous solution. DMABTS emitted fluorescence at 448 nm in aqueous solution and its fluorescence intensity was completely quenched upon interaction with Hg2+ ions, which should be attributed to the 1:1 complex formation between DMABTS and Hg2+. The binding constant of the complex was determined as 7.48 × 106 mol l−1. The linear range of quantitative detection of 0 to 5.77 × 10−6 mol l−1 and the detection limit of 7.7 × 10−7 mol l−1 for Hg2+ in the 6.3 × 10−6 mol l−1 DMABTS aqueous solution were obtained from a calibration curve. The coexistence of several transition metal ions and anions did interfere the fluorometric titration of Hg2+ ion by less than 4% in the emission change.  相似文献   

3.
A rapid,sensitive,selective and reliable strip assay based on DNA-functionalized gold nanoparticles for Hg2+ detection has been developed,with a detection limit 5 nmol/L.The measurement principle was based on thymine-Hg2+-thymine(T-Hg2+-T) coordination chemistry and streptavidin-biotin interaction.The major advantages of this assay are that results can be read visually without any instrument in less than 10 min and that it does not require any sample pretreatment.  相似文献   

4.
<正>A novel and simple fluorescent molecular sensor,1-pyrenecarboxaldehyde thiosemicarbazone(Hpytsc),was synthesized.Its higher sensitivity and selectivity to mercury(Ⅱ) ion were studied through absorption and emission channels.The UV-vis spectra show that the increasing mercury(Ⅱ) ion concentrations result in the decreasing absorption intensity.The fluorescence monomer emission of Hpytsc is enhanced upon binding mercury(Ⅱ) ion,which should be due to the 1:1 complex formation between Hpytsc and metal ion.  相似文献   

5.
A selective, sensitive probe for Hg(II) ions, 7-(diethylamino)-3-methyl-2H-benzo[b][1,4] oxazine-2-thione (1), is developed. Compound 1 behaves as a ratiometric probe, exhibiting a large blue shift of 100 nm in its absorption spectra upon exposure to Hg(II) ions. The dramatic color change of the solution made ‘naked-eye’ detection of Hg(II) ions possible. Emission spectra of 1 displayed a selective enhancement in intensity in the presence of Hg(II) ions. ESI+-MS analysis indicated that Hg2+-induced desulfurization caused the large absorption response.  相似文献   

6.
A novel fluorometric sensor bearing three dansyl moieties based on tris[2-(2-aminoethylthio)ethyl]amine was prepared by a simple approach using a conventional two-step synthesis. The sensor exhibits highly Hg2+-selective ON-OFF fluorescence quenching behavior in aqueous acetonitrile solutions and is shown to discriminate various competing metal ions, particularly Cu2+, Ag+, and Pb2+ as well as Ca2+, Cd2+, Co2+, Fe3+, Mn2+, Na+, Ni2+, and Zn2+, with a detection limit of 1.15 × 10−7 M or 23 ppb.  相似文献   

7.
He CL  Ren FL  Zhang XB  Han ZX 《Talanta》2006,70(2):364-369
A fluorescent chemical sensor for Hg(II) using 5,10,15-tris(pentafluorophenyl)corrole (H3(tpfc)) as fluorophore is described in this paper. The response of the sensor is based on the fluorescence quenching of H3(tpfc) by coordination with Hg(II). H3(tpfc) based sensor shows a linear response towards Hg(II) in the concentration range from 1.2 × 10−7 to 1.0 × 10−4 M, with a working pH range from 5.0 to 8.0. The response time for Hg(II) concentration ≤1.0 × 10−5 M is less than 5 min. The sensor shows good selectivity for Hg(II) over alkali, and alkaline earth, and most of transition metal cations. The effect of the composition of the sensor membrane has been studied and the experimental conditions optimized. The corrole based sensor membrane can be easily regenerated just by washing with blank buffer solution after each measurement. The sensor has been used for determination of Hg(II) in water samples with satisfactory results.  相似文献   

8.
Since the copper ions (Cu2+) play a fatal role in many foundational physiological processes, it is important to develop a simple, highly sensitive and selective sensor for Cu2+ detection in living systems. Herein, an intramolecular charge transfer (ICT) and dansyl-based fluorescent chemosensor 1 was designed, synthesized and characterized for the sensitive and selective quantification of Cu2+. It exhibited remarkable fluorescence quenching upon addition of Cu2+ over other selected metal ions, attributed to the complex formation between 1 and Cu2+ with the association constant 6.7 × 105 M?1. The sensor 1 showed a fast and linear response towards Cu2+ in the concentration range from 0 to 12.5 × 10?6 mol L?1 with the detection limit of 2.5 × 10?7 mol L?1. This detection could be carried out in a wide pH range of 5.0–14. Furthermore, sensor 1 can be used for detecting Cu2+ in living cells.  相似文献   

9.
Electrochemical detection of Hg(II) using a electropolymerized ion imprinting poly(2-mercaptobenzothiazole) films at the surface of gold nanoparticles/single-walled carbon nanotube nanohybrids modified glassy carbon electrode (PMBT/AuNPs/SWCNTs/GCE) is described for the first time. The Hg(II)-imprinted PMBT/AuNPs/SWCNTs/GCE sensor exhibits larger binding to functionalized capacity, larger affinity, faster binding kinetics and higher selectivity to template Hg(II). The differential pulse anodic stripping voltammetry (DPASV) response of the Hg(II)-imprinted PMBT/AuNPs/SWCNTs/GCE sensor to Hg(II) is ca. 3.7- and 10.5-fold higher than that at the non-imprinted PMBT/AuNPs/SWCNTs/GCE and the imprinted PMBT/AuNPs/GCE, respectively, and the detection limit for Hg(II) is 0.08 nM (S/N = 3, which is well below the guideline value given by the World Health Organization) and a sensitivity of 0.749 μA nM−1 was obtained. Excellent wide linear range (0.4–96.0 nM) and good repeatability (relative standard deviation of 2.6%) were obtained for Hg(II). The interference experiments show that Ag(I), Pb(II), Cd(II), Zn(II) and Cu(II) had little or no influence on the Hg(II) signal. These values, particularly the high sensitivity and excellent selectivity in contrast to the values reported previously in the area of electrochemical Hg(II) detection, demonstrate the analytical performance of the Hg(II)-imprinted PMBT/AuNPs/SWCNTs/GCE toward Hg(II) is superior to the existing electrodes and could be used for efficient determination of Hg(II) in natural water samples.  相似文献   

10.
The present study was aimed to use of N doped graphene quantum dots (N-GQDs) and N,K co-doped graphene quantum dots (N,K-GQDs) as a fluorescence quenching sensor to determine both mercury and copper in water sample, simultaneously using simple fluorescence protocol. Each of N-GQDs or N,K-GQDs was optimized separately with 1–5% (w/v) HNO3 or KNO3, respectively, and their quantum yields were determined and compared. It was found that N-GQDs, obtained from 3% (w/v) HNO3 doped resulted higher fluorescence intensity at the maximum excitation and emission wavelengths of 370 and 460 nm, respectively, with higher quantum yield (QY = 83.42%) compared with that of undoped GQDs (QY = 16.35%). While N,K-GQDs obtained from 5%(w/v) KNO3 gave somewhat different fluorescence spectrum, but still had the same maximum excitation and emission wavelengths with rather highest QY (94.07%). However, it is interesting that detection sensitivity expressed as slope of their calibration curve (y = 5.43x − 19.48; r2 = 0.9971) of the N-GQDs is rather higher than that (y = 1.29x + 17.66; r2 = 0.9977) of the N,K-GQDs for Hg2+ fluorescence quenching sensor, and the fluorescence intensity of N-GQDs had better selectively quenching effect only by both Hg2+ and Cu2+. Thus, their quenching effects were selected to develop the fluorescence turn-off sensor for trace level of both metal ions in real water samples. For method validation, the N-GQDs exhibited high sensitivity to detect both Hg2+ and Cu2+ with wide linear ranges of 20–100 μM and 100–500 μM, respectively. Limit of detection (LOD) and limit of quantitation (LOQ) were 0.42 μM & 1.41 μM for Hg2+ and 13.19 μM & 43.97 μM for Cu2+, respectively, with their precision expressed as an intra-day and an inter-day analysis of 6.98% & 11.35% for Hg2+ and 11.78% & 9.43% for Cu2+, respectively. Also the study of matrix analysis of the water samples (drinking water and tap water), was carried out using N-GQDs and N,K-GQDs resulted good percentage recoveries in comparison with those using undoped GQDs under the same optimum conditions.  相似文献   

11.
High-quality cysteamine-coated CdTe quantum dots (CA-CdTe QDs) were successfully synthesized in aqueous phase by a facile one-pot method. Through hydroxylamine hydrochloride-promoted kinetic growth strategy, water-soluble CA-CdTe QDs could be obtained conveniently in a conical flask by a stepwise addition of raw materials. The photoluminescence quantum yield (PL QY) of the obtained QDs reached 9.2% at the emission peak of 520 nm. The optical property and the morphology of the QDs were characterized by UV–vis absorption spectra, photoluminescence spectra (PL) and transmission electron microscopy (TEM) respectively. Furthermore, the fluorescence of the resultant QDs was quenched by copper (II) (Cu2+) and mercury (II) (Hg2+) meanwhile. It is worthy of note that to separately detect Hg2+, cyanide ion could be used to eliminate the interference of Cu2+. Under the optimal conditions, the response was linearly proportional to the logarithm of Hg2+ concentration over the range of 0.08–3.33 μM with a limit of detection (LOD) of 0.07 μM.  相似文献   

12.
Li Y  Wu P  Xu H  Zhang Z  Zhong X 《Talanta》2011,84(2):508-512
For the widely used gold nanoparticles (AuNPs)-based colorimetric probes, AuNPs generally change from dispersion to aggregation state accompanying with corresponding color turning from red to blue. Although colorimetric probes based on the anti-aggregation of AuNPs show exceptional selectivity and sensitivity, few examples have been reported in literature. A facile but highly sensitive and selective colorimetric probe based on the anti-aggregation of AuNPs transferred from the deactivation of aggregation agent 4,4′-dipyridyl by Hg2+ was developed in this work. This reported probe is suitable for real-time detection of Hg2+ in water with a detection limit of 3.0 ppb for Hg2+, and exhibits a selectivity toward Hg2+ by two orders of magnitude over other metal ions. The dynamic range of this probe can be conveniently tuned by adjusting the amount of 4,4′-dipyridyl used.  相似文献   

13.
An NH2-MIL-53(Al)-DES(ChCl-Urea) nanocomposite was synthesized for extraction and determination of Rhodamine (Rh) 6G from environmental and cosmetic samples. The deep eutectic solvent (DES) was prepared by mixing choline chloride and urea in a mole ratio of 1:2. NH2-MIL-53(Al)-DES(ChCl-Urea) nanocomposite was synthesized using the impregnation method at a ratio of 60:40 (w/w). The optimum conditions were determined after NH2-MIL-53(Al)-DES(ChCl-Urea) characterization was performed. The optimum conditions were determined as pH 8, adsorbent amount of 15 mg, total adsorption-desorption time of 6 min, and enrichment factor of 20. The recovery values of the solid-phase extraction method for water and cosmetic samples under optimum conditions were between 95% and 106%. NH2-MIL-53(Al)-DES(ChCl-Urea) nanocomposite was an economically advantageous adsorbent because of its reusability of 15 times. All analyses were performed using the ultraviolet-visible spectrophotometer. The linear range, limit of detection, and limit of quantification of the method were 100–1000, 9.80, and 32.68 μg/L, respectively. The obtained results showed that the synthesized nanocomposite is a suitable adsorbent for the determination of Rh 6G in water and cosmetic samples. The real sample applications were verified with the high-performance liquid chromatography system.  相似文献   

14.
A inducible fluorescent ligand 2-(2-(2-amino-ethylamino) ethyl)-3′,6′- bis (ethylamino)-2′, 7′-dimethy-lspiro[isoindoline-1,9′-xanthen]-3-one was synthesized and used as a fluorescent probe to detect Er3+. Er3+ could induce the structural transformation of the fluorescent ligand, resulting in a sharp fluorescence emission in a buffered solution. The fluorescence intensity of the fluorescent ligand was enhanced quantitatively with an increase in the concentration of erbium ion. The detection limit of Er3+ was 3.0 × 10?10 mol L?1 (50 ng L?1) under optimized conditions. The method applied for the determination of Er3+ in four alloy samples had achieved satisfactory results.  相似文献   

15.
A copper complex having quinoline moiety as fluorophore has been synthesized. The anion recognition behavior of the receptor and its copper complex has been studied in acetonitrile and in acetonitrile: H2O (95:5 v/v). The copper complex shows high selectivity toward acetate over other anions studied such as F, Cl, Br, I, OAc, dl-malate, l-mandelate, benzoate, isophthalate, , and .  相似文献   

16.
A simple layer-by-layer deposition technique was used to fabricate the multilayer thin films of unmodified silver triangular nanoplates(AgTNPs).The multilayer of AgTNPs thin films were fabricated by alternate deposition of each anionic sodium citrate stabilized AgTNPs and cationic poly(diallyldimethylammonium chloride).All prepared AgTNPs multilayer thin films were exhibited a strong plasmon band at the wavelength of 667 nm,which confirmed the formation of AgTNPs onto the substrate.The characteristics of the multilayer thin films were investigated using contact angle measurement,UV-visible spectroscopy,X-ray diffraction analysis(XRD),atomic force microscope(AFM)and field emission scanning electron microscope(FESEM).As these films are to be used as a mercury(II)colorimetric sensor,the changes in optical properties of the films were evaluated for various mercury(Ⅱ)concentrations.AgTNPs assembled into thin films showed a strong color shift from blue to mauve and colorless when exposed to mercury(Ⅱ).The constructed multilayer thin films exhibited excellent color changes of mercury(II) with a linear range between 0.5 and 20 ppm.The limit of detection(LOD) and limit of quantitation(LOQ) were 0.45 ± 0.002 and 1.52 ± 0.002 ppm,respectively.The recovery values of AgTNPs multilayer thin films are satisfactory in the range of 100.1%-106.4%when applied to determining mercury(Ⅱ) in water samples.  相似文献   

17.
The results obtained in potentiometric titrations of copper(II), mercury(II) and iron(III) with standard EDTA solutions are presented. The titration of copper(II) at pH values in the range from 8.11 to 10.99 (ammonia buffer) and the titration of mercury(II) and iron(III) at pH values from 3.59 to 5.65 (acetate buffer) were performed. The titration end-point (TEP) was detected with an indicator electrode made from natural crystalline pyrite as an electrochemical sensor. The results obtained in potentiometric titration with the pyrite electrode were compared with those obtained using a platinum electrode (Fe3+), a Cu ion selective electrode (Cu2+) and a Hg electrode (Hg2+). Accurate and reproducible results with good agreement were obtained, but higher potential changes at the TEP were obtained using the pyrite electrode. In the course of the titration the potential was established within less than 1 min, whereas at the TEP it was within about 2–3 min. The potential changes at the TEP were in the range from 60 to 200 mV per 0.1 ml EDTA, according to the stability constant of the complex formed. The highest potential changes, ranging from 160 to 200 mV, were obtained in the titration of iron(III) at pH 3.59. Reverse titration was also performed and accurate and reproducible results were obtained. Moreover, titration of halogenide and thiocyanate with standard mercury(II) solutions, as well as cyanide with silver(I) solution, were performed and accurate and reproducible results were again obtained. Received: 20 February 1998 / Accepted: 19 November 1999  相似文献   

18.
A simple, highly sensitive and selective carbon nanocomposite electrode has been developed for the electrochemical trace determination of mercury. This mercury nanocomposite sensor was designed by incorporation of thiolated amino acids capped AuNps into the carbon ionic liquid electrode (CILE) which provides remarkably improved sensitivity and selectivity for the electrochemical stripping assay of Hg(II). Mercury ions are expected to interact with amino acids through cooperative metal–ligand interaction to form a stable complex which provides a sensitive approach for electrochemical detection of Hg(II) in the presence of other metal ions. The detection limit was found to be 2.3 nM (S/N = 3) that is lower than the permitted value of Hg(II) reported by the Environmental Protection Agency (EPA) limit of Hg(II) for drinkable water. The proposed nanocomposite electrode exhibits good applicability for monitoring Hg(II) in tap and waste water.  相似文献   

19.
Poly(vinyl chloride) (PVC)-based membrane of pentathia-15-crown-5 exhibits good potentiometric response for Hg2+ over a wide concentration range (2.51 × 10−5 to 1.00 × 10−1 mol dm−3) with a slope of 32.1 mV per decade of Hg2+ concentration. The response time of the sensor is as fast as 20 s. The electrode has been used for a period of six weeks and exhibits fairly good discriminating ability towards Hg2+ in comparison to alkali, alkaline and some heavy metal ions. The electrode can be used in the pH range from 2.7 to 5.0.  相似文献   

20.
Lin YW  Liu CW  Chang HT 《Talanta》2011,84(2):324-329
We have developed a fluorescence technique for the detection of Hg2+ and Pb2+ ions using polythymine (T33)/benzothiazolium-4-quinolinium dimer derivative (TOTO-3) and polyguanine (G33)/terbium ions (Tb3+) conjugates, respectively. Hg2+ ions induce T33 to form folded structures, leading to increased fluorescence of the T33/TOTO-3 conjugates. Because Pb2+ ions compete with Tb3+ ions to form complexes with G33, the extent of formation of the G33-Tb3+ complexes decreases upon increasing the Pb2+ concentration, leading to decreased fluorescence at 545 nm when excited at 290 nm. To minimize interference from Hg2+ ions during the detection of Pb2+ ions, we conducted two-step fluorescence measurements; prior to addition of the G33/Tb3+ probe, we recorded the fluorescence of a mixture of the T33/TOTO-3 conjugates and Hg2+ ions. The fluorescence signal obtained was linear with respect to the Hg2+ concentration over the range 25.0-500 nM (R2 = 0.99); for Pb2+ ions, it was linear over the range 3.0-50 nM (R2 = 0.98). The limits of detection (at a signal-to-noise ratio of 3) for Hg2+ and Pb2+ ions were 10.0 and 1.0 nM, respectively. Relative to other techniques for the detection of Hg2+ and Pb2+ ions in soil and water samples, our present approach is simpler, faster, and more cost-effective.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号