首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A simple and rapid reversed-phase HPLC-UV method was developed for the determination of triterpenic acids in the crude extract of Prunellae Spica. Five triterpenic acids were extracted and isolated from P. Spica as marker compounds for use in the quality control of herbal medicines. Various solvent extraction techniques were evaluated, and the greatest efficiency was observed with sonication in 100% ethanol. Elemental compositions of the five marker compounds were determined by high-resolution mass spectroscopy. The dynamic range of the HPLC-UV method depended on the specific analyte, and acceptable quantitation was obtained between 10 and 250 μg mL−1 for oleanolic acid, between 10 and 300 μg mL−1 for ursolic acid, between 3 and 75 μg mL−1 for 2α,3α,24-trihydroxyolean-12en-28oic acid, between 5 and 100 μg mL−1 for euscaphic acid, and between 5 and 100 μg mL−1 for 2α,3α-dihydroxyurs-12en-28oic acid. The method was deemed satisfactory by inter- and intra-day validation and exhibited both high accuracy and precision (relative standard deviation <9.4%). Overall limits of quantitation and detection were approximately 0.5-2.5 μg mL−1 at a signal-to-noise ratio (S/N) of 3 and were about 3.0-10.0 μg mL−1 at a S/N of 10. In addition, principal component analysis (PCA) was performed on the analytical data of 15 different P. Spica samples in order to classify samples collected from different regions.  相似文献   

2.
An on-line method, based on coupling dynamic ultrasonic extraction (DUE), continuously sampling the suspension of sample and solvent, high performance liquid chromatographic separation with diode array detection, has been developed for the determination of the flavonoids, including baicalin, baicalein and wogonin, from the root of Scutellaria baicalensis Georgi. Variables influencing the DUE were evaluated by orthogonal test. The extraction yields of baicalin, baicalein and wogonin in the roots of S. baicalensis Georgi obtained from five different cultivated areas are 73.8–131.5 μg mg−1 (RSD ≤ 6.24%), 6.8–15.9 μg mg−1 (RSD ≤ 5.36%) and 4.4–14.3 μg mg−1 (RSD ≤ 5.30%), respectively. The limits of detection for baicalin, baicalein and wogonin are 0.30, 0.37 and 0.41 μg mL−1, respectively. Linearity is from 0.55 to 109 μg mL−1 for baicalin, from 0.51 to 105 μg mL−1 for baicalein and from 0.53 to 102 μg mL−1 for wogonin. Compared with off-line continuous flow-DUE, the proposed method would be more convenient for the determination of the analytes and the rapid optimization of the extraction process. The extraction yields of flavonoids obtained by the proposed method are comparable with those obtained by dynamic microwave assisted extraction, static ultrasonic extraction and reflux extraction. The result indicated that the proposed method is suitable to determine the active components in Chinese herbal medicine.  相似文献   

3.
Artemisinin isolated from the aerial parts of Artemisia annua L., is a promising and potent antimalarial drug, which meets the dual challenge posed by drug-resistant parasites and rapid progression of malarial illness. The aim of the current study was to develop a reliable and fast analytical procedure for the determination of artemisinin in A. annua using high performance liquid chromatography (HPLC) with evaporative light scattering detection (ELSD) in couple with microwave-assisted extraction (MAE) as an efficient sample preparation technique. The HPLC conditions were Agilent C18 column using water:acetonitrile (40:60 v/v) mixture as mobile phase at a flow rate of 1 mL min−1. ELSD conditions were optimized at nebulizer-gas flow rate of 2.0 L min−1 and drift tube temperature of 70 °C under the impactor off-mode, and the gain was set at 2. Afterwards, method validation system for HPLC-ELSD analysis was developed. Calibration range was 0.2-1.0 mg mL−1 and correlation coefficient r was above 0.9990. Precision experiments showed relative standard deviation (R.S.D.) of retention time was less than 0.5% and R.S.D. of peak area was less than 1.30%. Inter-day and intra-day variabilities showed that R.S.D. was ranged from 1.01% to 4.66%. Limit of detection was less than 40 μg mL−1 and limit of quantification was less than 100 μg mL−1. Accuracy validation showed that average recovery was between 98.23% and 104.97%. The developed analytical procedure was successfully applied to determine the contents of artemisinin in the different parts of A. annua plants.  相似文献   

4.
A novel solid-phase microextraction (SPME) fiber coated with multiwalled carbon nanotubes (MWCNTs)/Nafion was developed and applied for the extraction of polar aromatic compounds (PACs) in natural water samples. The characteristics and the application of this fiber were investigated. Electron microscope photographs indicated that the MWCNTs/Nafion coating with average thickness of 12.5 μm was homogeneous and porous. The MWCNTs/Nafion coated fiber exhibited higher extraction efficiency towards polar aromatic compounds compared to an 85 μm commercial PA fiber. SPME experimental conditions, such as fiber coating, extraction time, stirring rate, desorption temperature and desorption time, were optimized in order to improve the extraction efficiency. The calibration curves were linear from 0.01 to 10 μg mL−1 for five PACs studied except p-nitroaniline (from 0.005 to 10 μg mL−1) and m-cresol (from 0.001 to 10 μg mL−1), and detection limits were within the range of 0.03–0.57 ng mL−1. Single fiber and fiber-to-fiber reproducibility were less than 7.5 (n = 7) and 10.0% (n = 5), respectively. The recovery of the PACs spiked in natural water samples at 1 μg mL−1 ranged from 83.3 to 106.0%.  相似文献   

5.
Chen L  Yu A  Zhuang X  Zhang K  Wang X  Ding L  Zhang H 《Talanta》2007,74(1):146-152
The high-performance liquid chromatography (HPLC) coupled with on-line solid phase extraction (SPE) and ultraviolet (UV) detection was developed for determining andrographolide and dehydroandrographolide in rabbit plasma. Plasma samples (100 μL) were injected directly into a C18 SPE column and the biological matrix was washed out for 6 min using 15% aqueous methanol. By rotation of the switching valve, andrographolide and dehydroandrographolide were eluted in the back-flush mode and transferred to the analytical column by the chromatographic mobile phase consisted of methanol:acetonitrile (ACN):water (50:10:40; v/v). The UV detection was performed at 225 nm. The calibration curves showed excellent linear relationship (R ≥ 0.9993) over the concentration range of 0.05-5.0 μg mL−1. The within- and between-day precisions (R.S.D.) of two analytes were in the range of 1.2-6.5% and the accuracies were between 92.0% and 102.1%. Their recoveries were all greater than 94%. The limits of detection were 0.019 μg mL−1 for andrographolide and 0.022 μg mL−1 for dehydroandrographolide. This method was successfully applied to the plasma concentration-time curve study after oral administration of Andrographis paniculata Nees extract in rabbit.  相似文献   

6.
Fengli Hu 《Talanta》2009,77(4):1299-374
The chlorogenic acid (CA) in Honeysuckle is determined and identified by nano-liquid chromatography-electrospray ionization mass spectrometry (nano-LC-ESI/MS) after extraction with microwave-assisted extraction (MAE). As a new sample preparation method for Honeysuckle, the MAE procedure is optimized, validated and compared with conventional methods including reflux extraction (RE) and ultrasonic extraction (USE). It is found that MAE gives the best result due to the highest extraction efficiency within shortest extraction time (only 4 min). Here, CA is determined by nano-LC-ESI/MS based on the calibration curve of its authentic standard. The method linearity, detection limit, precision and recovery are studied. The results show that the combined MAE and nano-LC-ESI/MS method has a linearity (R2 0.991, 0.8-20 ng mL−1), a low limit of detection (0.5 ng mL−1), good precision (R.S.D. = 2.54%) and a recovery (84.8%). The experiment has demonstrated that the nano-LC-ESI/MS following MAE is a fast and reliable method for quantitative analysis of CA in Honeysuckle.  相似文献   

7.
High-performance liquid chromatographic method (HPLC) with evaporative light scattering detection (ELSD) coupled with microwave-assisted extraction (MAE) as an efficient sample preparation technique has been developed for fingerprint analysis of Dioscorea nipponica. The samples were separated with an Agilent C8 column using water (A) and acetonitrile (B) under gradient conditions (0-10 min, linear gradient 20-40% B; 10-12 min, linear gradient 40-42% B; 12-25 min, isocratic 42% B) as the mobile phase at a flow rate of 1 mL min−1 within 22 min. The ELSD conditions were optimized at nebulizer-gas flow rate 2.7 L min−1 and drift tube temperature 90 °C. Precision experiments showed relative standard deviation (R.S.D.) of peak area and retention time were better than 2.5%; inter-day and intra-day variabilities showed that R.S.D. was ranged from 0.78% to 4.74%. Limit of detection was less than 50 μg mL−1 and limit of quantification was less than 80 μg mL−1. Accuracy validation showed that average recovery was between 97.39% and 104.07%. The method was validated to achieve the satisfactory precision and recovery. Relative retention time and relative peak area were used to identify the common peaks for fingerprint analysis. There are nine common peaks in the fingerprint. The quality of seven batches of D. nipponica samples was evaluated to be qualified or unqualified by the parameters “difference” and “total difference” of common peaks. Furthermore, the contents of important medicinal compounds (dioscin, prodioscin and gracillin) in different batches of D. nipponica samples were determined simultaneously using the developed HPLC-ELSD method. The results indicated variation of the herb quality which might be related to different producing area, growing condition, climate, harvest time, drug processing and so on. The developed analytical procedure was proved to be a reliable and rapid method for the quality control of D. nipponica.  相似文献   

8.
A new straightforward method based on cloud-point extraction (CPE) was developed to determine osthole in rat plasma by reversed phase high-performance liquid chromatography with ultraviolet detection using a photodiode array detector. The non-ionic surfactant Triton X-114 was chosen as the extract solvent. Variable parameters affecting the CPE efficiency were evaluated and optimized. A Zorbax SB-C18 column was used for elution separation at 25 °C with detection wavelength at 322 nm. Under the optimum conditions, the method was shown to be reproducible and reliable with intra-day precision below 7.62%, inter-day precision below 6.37%, and accuracy within ±5.02% and mean extraction recovery more than 90.4%, which were all calculated using a range of spiked samples at three concentrations of 0.5, 5.0 and 15.0 μg mL−1 for osthole in plasma. The calibration curve for the analyte was linear in the range from 0.1 to 20 μg mL−1 with the correlation coefficients greater than 0.9981. Limit of detection (S/N = 3) was less than 0.03 μg mL−1and limit of quantification (S/N = 10) was less than 0.1 μg mL−1. After strict validation, the method was successfully applied to the pharmacokinetic study of osthole in rats after oral and intravenous administration, respectively.  相似文献   

9.
The directly suspended droplet microextraction (DSDME) technique coupled with the capillary gas chromatography-flame ionization detector (GC-FID) was used to determine BTEX compounds in aqueous samples. The effective parameters such as organic solvent, extraction time, microdroplet volume, salt effect and stirring speed were optimized. The performance of the proposed technique was evaluated for the determination of BTEX compounds in natural water samples. Under the optimal conditions the enrichment factors ranged from 142.68 to 312.13, linear range; 0.01-20 μg mL−1, limits of detection; 0.8-7 ng mL−1 for most analytes. Relative standard deviations for 0.2 μg mL−1 of BTEX in water were in the range 1.81-2.47% (n = 5). The relative recoveries of BTEX from surface water at spiking level of 0.2 μg mL−1 were in the range of 89.87-98.62%.  相似文献   

10.
Pourreza N  Ghomi M 《Talanta》2011,84(1):240-243
A novel simultaneous cloud point extraction method for the determination of carmoisine and brilliant blue FCF by spectrophotometry has been developed. The method is based on the cloud point extraction of carmoisine and brilliant blue FCF from aqueous solution using Triton X-100, diluting the extracted surfactant rich phase with water and measuring the absorbance at 522 and 640 nm for carmoisine and brilliant blue FCF, respectively. The effects of different parameters such as pH, concentration of surfactant and temperature on the cloud point extraction of both dyes were investigated and optimum conditions were established. Linear calibration curves were obtained in the range of 0.02-3.50 μg mL−1 for carmoisine and 0.05-3.50 μg mL−1 for brilliant blue FCF under optimum conditions. Detection limit based on three times the standard deviation of the blank (3Sb) was 0.017 and 0.016 μg mL−1 (n = 10) for carmoisine and brilliant blue FCF, respectively. The relative standard deviation (RSD) for 0.1 μg mL−1 was 4.14 and 3.30% (n = 10), for carmoisine and brilliant blue FCF, respectively. The method was applied to the simultaneous determination of the dyes in different food samples.  相似文献   

11.
New, simple, rapid and precise HPLC-PDA method has been developed and validated for quantification of biomarker myrsinoic acid B in stem bark extracts of Rapanea ferruginea Mez. The method employs a Phenomenex C18 column (250 mm × 4.6 mm I.D., 5 μm) with acetonitrile:methanol:water (pH 2.6 with phosphoric acid) at 48:30:22 as mobile phase, at a flow rate of 0.7 mL min−1 and photo diode array (PDA) detection at 270 nm. The validation data show that the method is specific, accurate, precise and robust. The method was linear, over a range of 5-100.0 μg mL−1, with a limit of detection of 0.369 μg mL−1 and limit of quantification of 1.233 μg mL−1. The method has also shown consistent recoveries (average of 101.3% and 0.12% RSD) of the biomarker, with low intra and inter-day relative standard deviation (1.26% and 1.62%, respectively). The evaluated hydroethanolic extract and dry extract presented MAB values of 63.53 and 36.07 mg g−1, respectively.  相似文献   

12.
A simple, sensitive, and specific method with gas chromatography-mass spectrometry was developed for simultaneous extraction and derivatization of amphetamines (APs) and 3,4-methylenedioxyamphetamines (MDAs) in human urine by using a monolithic silica spin column. All the procedures, such as sample loading, washing, and elution were performed by centrifugation. APs and MDAs in urine were adsorbed on the monolithic silica and derivatized with propyl chloroformate in the column. Methamphetamine-d5 was used as an internal standard. The linear ranges were 0.01-5.0 μg mL−1 for methamphetamine (MA) and 3,4-methylenedioxymethamphetamine (MDMA) and 0.02-5.0 μg mL−1 for amphetamine (AP) and 3,4-methylenedioxyamphetamine (MDA) (coefficient of correlation ≧0.995). The recovery of APs and MDAs in urine was 84-94%, and the relative standard deviation of the intra- and interday reproducibility for urine samples containing 0.1, 1.0, and 4.0 μg mL−1 of APs and MDAs ranged from 1.4% to 13.6%. The lowest detection limit (signal-to-noise ratio ≧ 3) in urine was 5 ng mL−1 for MA and MDMA and 10 ng mL−1 for AP and MDA. The proposed method can be used to perform simultaneous extraction and derivatization on spin columns that have been loaded with a small quantity of solvent by using centrifugation.  相似文献   

13.
Since its extensive development in the early 1980s, SFE has attracted considerable attention as a sample-preparation procedure. However, other different sample preparation procedures, including precipitation, liquid- and/or solid-phase extraction in biological fluids, also remain in use. In this investigation, SFE was introduced to isolate and identify orbifloxacin from plasma and milk. Four parameters, including the temperature and the pressure of supercritical fluid, modifier ratios, and dynamic extraction time, were evaluated and optimized to obtain the best yield of the analyte from the biological fluids. Determinations of the orbifloxacin (OBFX) in the extracts were carried out using HPLC-FLD. The optimum conditions of the extraction process that yielded the maximum analyte extraction efficiencies were 150 °C vs. 60 °C, 250 kg cm−2, 30% vs. 35% methanol, and 40 min vs. 20 min, for plasma and milk, respectively. The linearity of the calibration curves as well as the instrument LODs/LOQs were evaluated. Good linearity (at least r2 ≥ 0.999) of the calibration curves was obtained over the range from 0.2 to 0.01 μg mL−1. The method showed a good recovery rate (74.2-127.73%) and precision (RSDs: 1.64-20%). The instrumental LOD and LOQ values were 0.004 μg mL−1 vs. 0.01 μg mL−1 or 0.006 μg mL−1 vs. 0.02 μg mL−1, for plasma and milk, respectively. The method was successfully applied to estimate the pharmacokinetic variables of orbifloxacin in lactating does. To the best of our knowledge, this is the first time that SFE has been applied to isolate an antimicrobial agent from biological fluids. This method is promising for clinical applications and for pharmacokinetic studies of various pharmaceuticals in biological fluids.  相似文献   

14.
Four simple, rapid, accurate, precise, reliable and economical spectrophotometric methods have been proposed for simultaneous determination of salbutamol sulphate (SS), bromhexine hydrochloride (BH) and etofylline (ET) in pure and commercial formulations without any prior separation or purification. They were first derivative zero crossing spectrophotometry (method 1), simultaneous equation method (method 2), derivative ratio spectra zero crossing method (method 3) and double divisor ratio spectra derivative method (method 4). The ranges for SS, BH and ET were found to be 1-35 μg mL−1, 4-40 μg mL−1 and 5-80 μg mL−1. For methods 1 and 2, the values of limit of detection (LOD) were 0.2314 μg mL−1, 0.4865 μg mL−1 and 0.2766 μg mL−1 and the values of limit of quantitation (LOQ) were 0.7712 μg mL−1, 1.6217 μg mL−1 and 0.9221 μg mL−1 for SS, BH and ET, respectively. For method 3, LOD values were 0.3297 μg mL−1, 0.2784 μg mL−1 and 0.7906 μg mL−1 and LOQ values were 0.9325 μg mL−1, 0.9282 μg mL−1 and 2.6352 μg mL−1 for SS, BH and ET, respectively. For method 4, LOD values were 0.3161 μg mL−1, 0.2495 μg mL−1 and 0.2064 μg mL−1 and LOQ values were 0.9869 μg mL−1, 0.8317 μg mL−1 and 0.6879 μg mL−1 for SS, BH and ET. The precision values were less then 2% R.S.D. for all four methods. The common excipients and additives did not interfere in their determinations. The results obtained by the proposed methods have been statistically compared by means of Student t-test and by the variance ratio F-test.  相似文献   

15.
An automated system to perform liquid-liquid extraction is proposed, in which the effective mixture (the intimate contact) between the aqueous phase and the organic phase, as well as the separation of the phases, are carried out in a micro-batch glass extraction chamber. Sample, reagents and organic solvent are introduced into the glass extraction chamber by a peristaltic pump using air as carrier. The detection of the extracted species from the aqueous phase is made in a small volume (120-150 μl) of isobutyl methyl ketone (MIBK). The system allows enrichment factors of 2-10-fold. The proposed automatic system was evaluated for Cu(II) extraction based on complex formation between copper(II) and 1-(2′-pyridylazo)naphthol (PAN) in MIBK. When a volumetric ration of 2:1 (aqueous:organic) was implemented, copper was detected in the concentration range of 100-1600 μg l−1 (r = 0.9995) with a relative standard deviation of 2% (200 μg l−1, n = 5) and a detection limit of 20 μg l−1. The analytical curve was linear over the concentration range 25-500 μg l−1 (r = 0.9994) when a volumetric ratio of 10:1 was employed. With this ratio, the detection limit was 5.0 μg l−1 and the relative standard deviation was 6% (50 μg l−1, n = 5).  相似文献   

16.
The present article reports on the application of modified multiwalled carbon nanotubes (MMWCNTs) as a new, easily prepared and stable solid sorbent for the preconcentration of trace rhodium ion in aqueous solution. Rhodium ions were complexed with 1-(2-pyridylazo)-2-naphthol (PAN) in the pH range of 3.2-4.7 and then the formed Rh-PAN complex was adsorbed on the oxidized MWCNTs. The adsorbed complex was eluted from MWCNTs sorbent with 5.0 mL of N,N-dimethylformamide (DMF). The rhodium in eluted solution was determined by flame atomic absorption spectrometry (FAAS). Linear range for the determination of rhodium was maintained between 0.16 ng mL−1 and 25.0 μg mL−1 in initial solution. Relative standard deviation for the 10 replicated determination of 4.0 μg mL−1 of rhodium was ±0.97%. Detection limit was 0.010 ng mL−1 in initial solution (3Sbl, n = 10) and preconcentration factor was 120. Sensitivity for 1% absorbance of rhodium (III) was 0.112 μg mL−1. The sorption capacity of oxidized MWCNTs for Rh (III) was 6.6 mg g−1. The effects of the experimental parameters, including the sample pH, flow rates of sample and eluent solution, eluent type, breakthrough volume and interference ions were studied for the preconcentration of Rh3+. The proposed method was successfully applied to the extraction and determination of rhodium in different samples.  相似文献   

17.
The highly selective, fast and effective sample pretreatment technique molecularly imprinted solid-phase extraction (MISPE) can overcome the low sensitivity of the highly efficient capillary electrophoresis-UV method (CE-UV). In this work, narrowly dispersible bisphenol A (BPA)-imprinted polymeric microspheres with a high capacity factor of k′ = 6.8 and an imprinted factor of I = 6.53 were investigated as selective solid-phase extraction (SPE) sorbents for use in extraction of BPA from different sample matrices (tap water, wastewater, Yangtze River water, soil from the Yangtze River, shrimp and human urine). Washing and eluting protocols of MISPE were optimized. Under optimal conditions, recoveries of MISPE were investigated. Recoveries were basically constant and the relative standard deviation (RSD) was lower than 5.8% when loading volumes changed from 1 to 50 mL. Recoveries ranged from 71.20% to 86.23% for different sample matrices. Compared with C18 SPE, MISPE had higher selectivity and recovery for BPA. BPA was determined with good accuracy and precision in different complex samples using CE-UV coupled with MISPE. Spiked recoveries ranged from 95.20% to 105.40%, and the RSD was less than 7.2%. Because a large loading volume was achieved, the enrichment efficiency of pretreatment and the sensitivity of this method were improved. The limits of detection of this MISPE-CE-UV method for BPA in tap water, wastewater, Yangtze River water, soil from the Yangtze River, shrimp and human urine were 3.0 μg L− 1, 5.4 μg L− 1, 6.9 μg L− 1, 2.1 μg L− 1, 1.8 μg L− 1 and 84 μg L− 1, respectively.  相似文献   

18.
In the present work, a new ligandless-dispersive liquid-liquid microextraction (LL-DLLME) method has been developed for preconcentration trace amounts of copper as a prior step to its determination by flame atomic absorption spectrometry. In the proposed approach 1,2-dicholorobenzene and ethanol were used as extraction and dispersive solvents, respectively. Some factors influencing on the extraction efficiency of copper and its subsequent determination were studied and optimized, such as the extraction and dispersive solvent type and volume, pH of sample solution, extraction time and salting out effect. Under the optimal conditions, the calibration curve was linear in the range of 1.0 ng mL−1-0.6 μg mL−1 of copper with R2 = 0.9985. Detection limit was 0.5 ng mL−1 in original solution (3Sb/m) and the relative standard deviation for seven replicate determination of 0.2 μg mL−1 copper was ±1.4%. The proposed method has been applied for determination of copper in standard and water samples with satisfactory results.  相似文献   

19.
Hollow fibre liquid-phase microextraction with in situ derivatization using dansyl chloride has been successfully developed for the high-performance liquid chromatography-ultraviolet (HPLC-UV) determination of the biogenic amines (tryptamine, putrescine, cadaverine, histamine, tyramine, spermidine) in food samples. Parameters affecting the performance of the in situ derivatization process such as type of extraction solvent, temperature, extraction time, stirring speed and salt addition were studied and optimized. Under the optimized conditions (extraction solvent, dihexyl ether; acceptor phase, 0.1 M HCl; extraction time, 30 min; extraction temperature, 26 °C; without addition of salt), enrichment factors varying from 47 to 456 were achieved. Good linearity of the analytes was obtained over a concentration range of 0.1–5 μg mL−1 (with correlation coefficients of 0.9901–0.9974). The limits of detection and quantification based on a signal-to-noise ratio of 3–10, ranged from 0.0075 to 0.030 μg mL−1 and 0.03 to 0.10 μg mL−1, respectively. The relative standard deviations based on the peak areas for six replicate analysis of water spiked with 0.5 μg mL−1 of each biogenic amine were lower than 7.5%. The method was successfully applied to shrimp sauce and tomato ketchup samples, offering an interesting alternative to liquid–liquid extraction and solid phase extraction for the analysis of biogenic amines in food samples.  相似文献   

20.
A new reversed-phase high performance liquid chromatography with resonance Rayleigh scattering detection (HPLC-RRS) was developed for simultaneous separation and determination of four tetracycline antibiotics (TCs). A good chromatographic separation among the compounds was achieved using a Synergi Fusion-RP column (150 mm × 4.6 mm; 4 μm) and a mobile phase consisting of methanol-acetonitrile-oxalic acid (5 mM) at the flow rate of 0.8 mL min−1. Column temperature was 30 °C. The RRS signal was detected at λex = λem = 370 nm. The recoveries of sample added standard ranged from 95.3% to 103.5%, and the relative standard deviation was below 2.79%. A detection limit of 2.12-5.12 μg mL−1 was reached and a linear range was found between peak height and concentration in the range of 10.36-518.0 μg mL−1 for oxytetracycline (OTC), 12.11-605.5 μg mL−1 for tetracycline (TC), 11.79-589.5 μg mL−1 for chlortetracycline (CTC) and 10.32-516.0 μg mL−1 for doxycycline (DC). The linear regression coefficients were all above 0.999. The method has been applied successfully to the determination of OTC, TC, CTC, DC in pharmaceutical formulations and in honey. The method was simple, rapid and showed a better linear relation and high repeatability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号