首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study establishes a new method to analyze the radical scavenging activity of antioxidants based on the luminol-H2O2-Co(II)/EDTA chemiluminescence and flow injection analysis. The method is based on the catalytic oxidation of hydrogen peroxide by Co(II)/EDTA complex, forming a free radical flux that can produce a stable chemiluminescence signal which is attenuated in the presence of antioxidants. A properly designed FIA manifold and the appropriate regulation of the chemiluminescence-reagent mixture enabled the establishment of a reaction-sensitive analytical procedure that minimizes oxidant-antioxidant interactions while favors the inhibition effect of antioxidants on the free radicals flux. In that manner, the uncontrolled experimental variability induced by side-reactions occurring antagonistically is reduced. The method was examined in-vitro for the continuous monitoring of the generation of oxygen-derived free radicals and antioxidants, which is closer to in-vivo conditions, with three common antioxidants (ascorbic acid, glutathione and uric acid). All three antioxidants were found to inhibit the luminescent signal with strict logarithmic linear mode, yielding calibration curves rectilinear in the range of 5 × 10−8-5 × 10−5 mol L−1 and detection limits at the 10−8 mol L−1 levels. The F-statistic was employed to assess the ability of the method to detect differences in the activity of the examined antioxidants. The results suggest that the proposed method can be used efficiently for the detection of free radical activity in real samples.  相似文献   

2.
Ji X  He Z  Ai X  Yang H  Xu C 《Talanta》2006,70(2):353-357
A competitive immunoassay for clenbuterol (CLB) based on capillary electrophoresis with chemiluminescence (CL) detection was established. The method was based on the competitive reaction of horseradish peroxidase (HRP)-labeled CLB (CLB-HRP) and free CLB with anti-CLB antiserum. The factors affecting the electrophoresis and CL detection were systematically investigated with HRP as a model sample. Under the optimal conditions, the tracer CLB-HRP and the immunoassay complex were separated, and the linear range and the detection limit (S/N = 3) for CLB were 5.0-40 nmol l−1 and 1.2 nmol l−1, respectively. The proposed method has been applied satisfactorily in the analysis of urine sample.  相似文献   

3.
Shuqing Dong  Yuzhi Fang 《Talanta》2009,80(2):809-303
In the paper, a new kind of vitamin B12 (acquo-cobalamine) chemically modified electrode was fabricated and applied in capillary zone electrophoresis coupled with amperometric detection (CZE-AD) for simultaneous determination of six antioxidants in fruits and vegetables. The catalytic electrochemical properties of the chemically modified electrode could obviously enhance oxidation peak heights responses by about five times to glutathione, ascorbic acid, vanillic acid, chlorogenic acid, salicylic acid, and caffeic acid compared with common carbon disk electrode. Furthermore, the effects of working electrode potential, pH and concentration of running buffer, separation voltage and injection time on CZE-AD were investigated. Under the optimum conditions, the six analytes could be completely separated and detected in a borate-phosphate buffer (pH 8.4) within 15 min. Their linear ranges were from 2.5 × 10−7 to 1.0 × 10−4 mol L−1 and the detection limits were as low as 10−8 mol L−1 magnitude (S/N = 3). The proposed method has been successfully employed to monitor the six analytes in practical samples with recoveries in the range 96.0-106.0% and RSDs less than 5.0%. Above results demonstrate that capillary zone electrophoresis coupled with electrochemical detection using vitamin B12 modified electrode as detector is of convenient preparation, high sensitivity, good repeatability, and could be used in the rapid determination of practical samples.  相似文献   

4.
Liu AL  He FY  Hu YL  Xia XH 《Talanta》2006,68(4):1303-1308
Rapid separation and determination of acetaminophen and its hydrolysate with end-channel electrochemical (EC) detection integrated on a plastified poly(ethylene terephthalate) (PET)-toner microchip capillary electrophoresis (CE) system was investigated. In this separation and detection system, a Pt ultramicroelectrode integrated on a three-dimensional adjustor was used as working electrode. Factors influencing the separation and detection were investigated and optimized. Results show that acetaminophen and p-aminophenol can be well separated within 84 s with R.S.D. < 1% for migration time and R.S.D. < 3.6% for detection current for both analytes. Detection limits for both analytes are determined to be 5.0 μM (S/N = 3). This method has been successfully applied to the detection of trace p-aminophenol in paracetamol tablets. The results demonstrate that the PET-toner microchips can obtain better performance than PDMS microfluidic devices but at much lower cost.  相似文献   

5.
In the present work, chemiluminescence detection was integrated with capillary electrophoresis microchip. The microchip was designed on the principle of flow-injection chemiluminescence system and capillary electrophoresis. It has three main channels, five reservoirs and a detection cell. As model samples, dopamine and catechol were separated and detected using a permanganate chemiluminescent system on the prepared microchip. The samples were electrokinetically injected into the double-T cross section, separated in the separation channel, and then oxidized by chemiluminescent reagent delivered by a home-made micropump to produce light in the detection cell. The electroosmotic flow could be smoothly coupled with the micropump flow. The detection limits for dopamine and catechol were 20.0 and 10.0 μM, respectively. Successful separation and detection of dopamine and catechol demonstrated the distinct advantages of integration of chemiluminescent detection on a microchip for rapid and sensitive analysis.  相似文献   

6.
A new capillary electrophoretic (CE) method was developed for the rapid and simple determination of glutaraldehyde in photographic developing solutions. The proposed system is based on the selective pre-capillary derivatization of glutaraldehyde with sulfite and CE determination of anionic glutaraldehyde-bisulfite adduct formed. Since the developing solutions contain large amounts of sulfite ions, the only procedure required for derivatization is a dilution of the sample with carrier electrolyte. For separations of sulfite, acetate, glutaraldehyde-bisulfite and hydroquinone sulfonate anions, capillaries coated with poly(diallyldimethylammonium chloride) prior to analysis were used. Separation of four anions was accomplished in less than 3 min in 5 mmol l−1p-hydroxybenzoate-imidazole (p-HB) electrolyte at pH 6.0 using indirect UV detection at 254 nm. The optimal conditions for the derivatization reaction were established by varying concentration of sulfite, pH and reaction time. The recovery tests established for photographic developer samples were within the range 94.0-98.4%.  相似文献   

7.
Chemiluminescence multichannel immunosensor for biodetection   总被引:1,自引:0,他引:1  
An improved portable detector for biological compounds, the chemiluminescence multichannel immunosensor (CL-MADAG), has been developed and characterised. The device is based on a capillary ELISA technique in combination with a miniaturised fluidics system and uses chemiluminescence as the detection principle. The fluidics system construction allows three chemiluminescence immunoassays to be performed simultaneously within three fused silica capillaries (FSC). The CL-MADAG was characterised in a series of experiments with staphylococcal enterotoxin B (SEB) as a model toxin, the bacterial phage virus M13 as a virus simulant, and a pathogenic strain of Escherichia coli as simulant for bacteria. It was shown that the CL-MADAG can assay liquid samples for these substances within 24 min. The detection limits were 5 ng/ml for SEB, 105 cfu/ml for E. coli O157:H7 and 107 pfu/ml for M13.  相似文献   

8.
In the present work, the separations of calixarene derivatives have been investigated using both high-performance liquid chromatography (HPLC) and nonaqueous capillary electrophoresis (NACE) techniques. HPLC-1 method with LC-318 (pore size = 300 Å) column and MeCN mobile phase was optimized for the separation of calixarenes. At the flow-rate of 1 ml/min p-nitrocalix[6]arene, calix[4]arene and calix[6]arene could be well baseline and symmetrically separated within 5 min. For the separation of p-tert-butylcalix[n]arenes (n = 4, 6, 8), HPLC-2 and NACE methods have been optimized. The optimal conditions in HPLC-2 method included NH2 column and MeCN mobile phase, and p-tert-butylcalix[n]arenes (n = 4, 6, 8) were baseline separated within 10 min at 0.8 min/min. The optimal conditions for NACE method employed MeCN-H2O (8:2, v/v) as the nonaqueous medium and 120 mM Tris/HCl (pH 9.0) as the buffer, and p-tert-butylcalix[n]arenes (n = 4, 6, 8) were successfully baseline resolved within 16 min. With the detection at 280 nm, the calibration lines were linear in the ranges of 1-200 μg/ml for calixarene derivatives by HPLC-1 and HPLC-2 methods, and of 2.5-200 μg/ml for p-tert-butylcalix[n]arenes (n = 4, 6, 8) by NACE method, respectively. The detection limits (S/N = 3) and recoveries ranged from 0.5 to 1.4 μg/ml and from 98.1 to 102.4% by both HPLC-1 and HPLC-2 methods, and from 1.3 to 2.0 μg/ml and from 97.9 to 105.1% by NACE method, respectively. The intra-day reproducibility of the methods was determined with satisfactory results. The proposed HPLC and NACE methods were accurate and reproducible, and could be utilized to separate and determine calixarene derivatives.  相似文献   

9.
The combined flow injection (FI)-capillary electrophoresis (CE) system was further exploited by coupling to an electrogenerated chemiluminescence (ECL) detection system. A low-cost miniaturized CE system was developed on a chip platform to provide easy interface both with FI sample introduction and with ECL detection. A falling-drop interface was employed to perform FI split-flow sample introduction while achieving electrical isolation from the CE high voltage. A plexiglas reservoir at the capillary outlet served as both the reaction and detection cell for the ECL reaction, with Ru(bpy)32+ reagent continuously flowing through the cell. An optical fiber was positioned within the reservoir close to the capillary outlet for transferring the ECL emission to the PMT. The relative positions of the capillary outlet, working electrode and optical fiber as well as reagent renewal flow-rate were optimized to achieve both good sensitivity and separation efficiency under non-interrupted sampling conditions, involving large numbers of samples. An on-column joint often used in other works for isolating the ECL detection system from the CE separation voltage was not found necessary. The performance of the system was illustrated by the baseline separation of proline, valine and phenylalanine with a high throughput of 50 h−1 and plate height of 14 μm for proline under 147 V cm−1 field strength. Detection limits (3σ) were 1.2, 50 and 25 μM and peak height precisions were 1.4, 5.4 and 4.3% R.S.D. (n=9) for proline, valine and phenylalanine, respectively.  相似文献   

10.
Determination of tea catechins   总被引:5,自引:0,他引:5  
An overview of analytical methods for the measurement of biologically important tea catechins is presented. Liquid chromatography and capillary electrophoresis are the most cited techniques for catechin separation, identification and quantitation. Liquid chromatography with ultraviolet detection is frequently used; however, mass spectrometry, electrochemical, fluorescence and chemiluminescence detection are also utilized in cases where more sensitive or selective detection is needed. Two modes of capillary electrophoresis, capillary zone electrophoresis and micellar electrokinetic capillary chromatography, have been employed for the determination of catechins. Both modes of capillary electrophoresis are based on ultraviolet detection. Additional analytical techniques, such as gas chromatography, thin-layer chromatography, paper chromatography, spectrophotometry, biosensing, chemiluminescence and nuclear magnetic resonance spectroscopy have also been utilized for the determination of catechins and are reviewed herein.  相似文献   

11.
Several metal-binding proteins, including albumin, carbonic anhydrase, conalbumin, cytochrome c, ferritin, hemoglobin, myoglobin, plasma amine oxidase, superoxide dismutase and transferrin were separated with capillary zone electrophoresis (CZE) in uncoated and coated capillaries. Phosphate and tetraborate buffers achieved complementary separation selectivities. Optimised pre-wash protocols for uncoated capillaries using 0.1 M HCl as a rinsing solution for the borate buffer and a combination of 0.1 M NaOH and 0.1 M HCl for the phosphate system improved the stability of migration times considerably with coefficients of variation between 0.10 and 0.77% (n=7) instead of up to 2.92% with inappropriate rinsing conditions. Capillaries coated with poly(vinyl alcohol) and equipped with a 150 μm i.d. bubble cell increased the signal-to-noise ratio by a factor three, additionally improving the resolution. For commercial protein standards, which gave several peaks in CZE with UV detection, MS data proved the presence of proteinaceous contaminants. Molecular weights (Mr) of proteins experimentally determined from MS data showed deviations from theoretical Mr as small as 0.002-0.021%. Applicability of the developed separation for clinical samples is shown for human serum.  相似文献   

12.
Zhi Q  Xie C  Huang X  Ren J 《Analytica chimica acta》2007,583(2):217-222
In this paper, we describe a new method for determination of hemoglobin of single red blood cells by coupling chemiluminescence with capillary electrophoresis (CL-CE). The chemiluminescent detection is based on the catalytic effects of hemoglobin on the luminol-hydrogen peroxide reaction. The conditions of chemiluminescent reaction and capillary electrophoresis were investigated. Hemoglobin in human blood samples was detected with the present method, the linear range from 1.7 μg mL−1 to 6.8 μg mL−1 was tested, and the correlation coefficient of 0.997 and low detection limit of 0.17 μg mL−1 (approximately 2.2 pg, S/N = 3) were obtained. Cell injection procedure was improved, and the method was successfully used to determine hemoglobin of single red blood cells and the statistical result of the average content of hemoglobin in 26 human red blood cells was 23.6 pg. Compared to other current methods, CE with CL system is simple, sensitive and will become an attractive alternative method for single cell analysis.  相似文献   

13.
Lee HL  Chen SC 《Talanta》2004,64(1):210-216
Microchip capillary electrophoresis (μCE) with amperometric detection at Cu electrode benefited fast separation and direct detection of carbohydrates. The working electrode of 50-μm Cu wire attached nearly against the channel outlet—4 μm, where it benefited collecting detection current and suppressing overwhelming noise. The use of alkaline medium was essential to separating and detecting carbohydrates, which dissociated into the sensitive alcolate anions. The 10-cm serpentine chip, though lengthening the migration time, it provided better efficiency. Sucrose, cellobiose, glucose, and fructose migrated from the outlet in 400 s +2000 V. The linear calibration plots ranging from 10 to 1000 μM with regression coefficients better than 0.996 were obtained. The injection-to-injection reproducibility of 1.24% (n=7) for glucose in peak current and 0.6% for migration times were excellent. The detection limit was low, down to 2.3 μM for glucose (S/N=3) or 27.6 attomole in mass detection.  相似文献   

14.
Tang Y  Wu M 《Talanta》2005,65(3):794-798
A method of quickly determining ascorbic acid and sorbic acid by capillary zone electrophoresis with ultraviolet detection was developed. The choice of background electrolyte, wavelength, injection time and applied voltage were discussed. Ascorbic acid and sorbic acid were well separated in 80 mmol L−1 boric acid-5 mmol L−1borax (pH = 8.0) in 5 min at the detecting wavelength of 270 nm. Under the optimum condition, the method has linear ranges of 2.54-352.00 mg L−1 for ascorbic acid and 1.08-336.39 mg L−1 for sorbic acid with the detection limit of 1.70 mg L−1 for ascorbic acid and 0.54 mg L−1 for sorbic acid, respectively. Other organic acids in fruit juices have no effect on the detection. This method is very feasible and simple and can be used to detect ascorbic acid and sorbic acid in fruit juices.  相似文献   

15.
Chu Q  Jiang L  Tian X  Ye J 《Analytica chimica acta》2008,606(2):246-251
Capability of fast analysis of a novel miniaturized capillary electrophoresis with carbon disk electrode amperometric detection (mini-CE-AD) system was demonstrated by determining acetaminophen and p-aminophenol in dosage forms. Factors influencing the separation and detection processes were examined and optimized. Under the optimum conditions, the end-capillary 300 μm carbon disc electrode amperometric detector offered favorable signal-to-noise characteristics at a relatively low potential (+600 mV versus Ag/AgCl) for detecting acetaminophen and p-aminophenol. Two analytes can been separated within 150 s in a 8.5 cm length capillary at a separation voltage of 2000 V using a Na2B4O7-KH2PO4 running buffer (pH 7.2). Acetaminophen and p-aminophenol could be detected down to the 1.4 × 10−6-5.9 × 10−7 mol L−1 level with linearity up to the 1.0 × 10−3 mol L−1 level examined. The inter-day repeatability for analytes in peak current (R.S.D. ≤ 2.3%) and migration times (R.S.D. ≤ 1.3%) were excellent. The proposed mini-CE-AD system should find a wide range of analytical applications in pharmaceutical formulations as an alternative to conventional CE and μ-CE.  相似文献   

16.
A method based on microchip electrophoresis (MCE) with chemiluminescence (CL) detection was developed for the determination of ascorbic acid (AA) and amino acids including tryptophan (Trp), glycine (Gly) and alanine (Ala) present in single cells. Cell injection, loading, lysing, electrophoretic separation and CL detection were integrated onto a simple cross microfluidic chip. A single cell was loaded in the cross intersection by electrophoretic means through applying a set of potentials at the reservoirs. The docked cell was lysed rapidly under a direct electric field. The intracellular contents were MCE separated within 130 s. CL detection was based on the enhancing effects of AA and amino acids on the CL reaction of luminol with K3[Fe(CN)6]. Rat hepatocytes were prepared and analyzed as the test cellular model. The average intracellular contents of AA, Trp, Gly and Ala in single rat hepatocytes were found to be 38.3, 5.15, 3.78 and 3.84 fmol (n = 12), respectively.  相似文献   

17.
By use of the high separation capability of capillary electrophoresis (CE) and ultrasensitive chemiluminescence (CL) detection, a CE-CL method was proposed for the ultrasensitive determination of trace cobalt in a single hair, which is potentially useful in construction of the fingerprint of trace elements in the hair collected from crime scenes. In this work, the CE experimental conditions, CL experimental conditions and the digestion methods for the analysis of a single hair sample for cobalt were investigated in detail. The relative limit of detection (LOD, 3σ) was 0.01 ng/mL, and the absolute LOD was 2.4 × 10− 16 g considering the sampling volume of 24 nL. Using a dry digestion method, the analytical results for certified reference hair samples by the proposed method were in good agreement with the certified values. Finally, this method was successfully used to detect trace cobalt in a single hair from three adults. It has potential applications in forensic analysis.  相似文献   

18.
A rapid immunoassay for sensitive detection of microcystin-LR using a portable chemiluminescence multichannel immunosensor (CL-MADAG) was developed. The sensor device is based on a capillary ELISA technique in combination with a miniaturized fluidics system and uses chemiluminescence as the detection principle. Minimum concentrations of at least 0.2 μg L−1 microcystin-LR could be unambiguously measured in a spiked buffer system as well as in spiked real water samples. A single sample analysis for detection of microcystin-LR could be accomplished in just 13 min on the CL-MADAG. Besides providing a highly reproducible, fast and easy to perform test format, one major advantage of the newly established capillary immunoassay is represented by the feasibility of an internal retrospective quality control mechanism. Finally, simultaneous CL-MADAG measurements employing our inhibition immunoassay and a sandwich ELISA could be successfully demonstrated.  相似文献   

19.
A miniaturized capillary electrophoresis (CE) system with UV-Vis detection was coupled to a flow injection (FI) system for achieving high throughput continuous sample introduction. The cassette of a commercial CE instrument was modified to hold a 6.5 cm long silica capillary and a flow-through waste reservoir. The cassette was inserted into the flow-cell chamber of a commercial UV detector, with the light beam focused on the capillary and collected by two ball lenses on the cassette. The capillary inlet, left outside the cassette and detector, was positioned on the top of a vertical 3.5 mm diameter glass rod, in close contact with an electrode. Samples injected through the FI system dropped freely on top of the pillar, covering the capillary inlet and electrode. Continuous sample introduction was achieved for CE separations under non-interrupted separation voltage, which was isolated from the FI system through the discontinuity of droplets. The newly developed interface and UV detection system was used for fast separation of sulphamethoxazole (SMZ) and trimethoprim (TMP) in sulphatrim tablets, achieving a high throughput of over 48 h−1, and a low carryover of 2%. Separation efficiencies of 8 μm plate height and detection limits of 1.0 mg l−1 for SMZ and 0.5 mg l−1 (3σ) for TMP were obtained.  相似文献   

20.
Lee HL  Chen SC 《Talanta》2004,64(3):750-757
An integrated multiple-enzymatic assay was performed on a (microchip capillary electrophoresis) μCE-EC chip capable of precise intake of sample or reagents in nanoliters. Incorporating multiple-enzyme assay into the μCE chip is relatively new—rendering simultaneous analysis of creatinine and uric acid a snap.Added to the list of merits in this study are the enhanced sensitivity down to 1 μM and a broader spectrum of analytes—inclusive of glucose for the long-time sufferers of diabetes. The performance was orchestrated to attain the claimed level: employing the end-channel electrode mode to tame the noises and the precolumn enzymatic reaction to stabilize the baseline. The 10 μm embedded Pt electrode, deposited at the end of the 30 μm wide separation channel, benefited chip fabrication besides noise reduction. The optimized conditions were 20 mM phosphate buffer (pH 7.5), +1.5 kV separation voltage and +1.0 V detection potential (versus Ag/AgCl). The migration time was repeatable within the deviation of 0.5% R.S.D. (n=7), but the peak currents ranged from 1.5 to 2.2% R.S.D. The detection limits (S/N=3) ranged from 0.71 μM for ascorbic acid to 10 μM for glucose. The calibration curve was linear from 10 to 800 μM (R2>0.995). Glucose, creatinine, uric acid and ascorbic acid as model analytes, in pure form or in serum and urine samples, were tested to verify its feasibility.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号