首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A methodology for simultaneous preconcentration and determination of Cr(VI) from aqueous samples was developed using a membrane optode formed by physical inclusion of a Cr(VI) selective chromophore 1,5-diphenylcarbazide (DPC) into a plasticized cellulose triacetate matrix. The inclusion of an anion exchanger (Aliquat-336) was found to be effective for immobilization of both DPC and Cr(VI)-DPC complex in the optode matrix itself. The proportionality in intensity of the magenta color on the optodes loaded with varying amounts of Cr(VI) suggests its potential applications for screening of Cr(VI) in aqueous samples by visual colorimetry. On loading high amounts of Cr(VI) in the membrane optode, its color changes from magenta to yellow, which indicates the possibility of using it as a threshold detector for Cr(VI). The membrane optode was optimized in terms of obtaining maximum preconcentration efficiency for Cr(VI) and subsequent stable optical response proportional to the amount of Cr(VI) in the membrane optode sample. The membrane optodes were tested for Cr(VI) determination in tap water and seawater samples. Using this optode, Cr(VI) even at levels of 13.6 ppb could be quantitatively detected. The optodes developed in the present work were found to be stable, cost effective, easy to prepare and efficient for direct preconcentration and determination of Cr(VI) in a variety of aqueous samples using spectrophotometry. However, this membrane optode is for one time use only as the reaction of Cr(VI) with DPC is irreversible.  相似文献   

2.
Extraction processes which employ porous membranes as a barrier between aqueous and organic phases provide a versatile means for selective removal and enrichment of solutes from aqueous streams. They require relatively little maintenance, their energy consumption is very low and the organic liquid losses are negligible if the pressure is controlled properly. The modelling and simulation of a complete plant for the removal and recovery of Cr(VI) with Aliquat 336 using hollow fibre modules have been studied. Both single and dual function membrane modules have been analyzed. Simulated concentration profiles through the module were obtained by solving mass transfer balances corresponding to all the species involved in the process.  相似文献   

3.
Flat sheet liquid-supported membranes (FSLSM) containing Aliquat 336 as a carrier have been evaluated as sample interface in an optical sensor for Cr(VI) monitoring. A model describing the transport mechanism of Cr(VI) through the membrane is reported. The model considers a diffusion process through a feed aqueous diffusion layer, a fast interfacial chemical reaction and a diffusion of ALQHCrO4 and (ALQ)2CrO4 species through the membrane (Aliquat 336, ALQ). The mathematical equations describing the transport rate are derived and they correlate the membrane permeability coefficient to diffusional and equilibrium parameters as well as to the chemical composition of the system, i.e. extractant concentration in the membrane phase and acidity in the feed phase. The experimental data are explained by the derived equations and the diffusion resistances to mass transfer are evaluated. The influence of other experimental parameters, such as stirring speed in the feed phase and nature of the diluent and stripping agent on the transport is also discussed. Experiments with optical detection demonstrate the suitability of liquid-supported membranes (LSM) containing ALQ as interfaces for optical sensing.  相似文献   

4.
A voltammetric procedure in the flow system for determination of traces of Cr(VI) in the presence of Cr(III) and humic acid is presented. The calibration graph is linear from 5×10−10 to 1×10−7 mol l−1 for an accumulation time of 120 s. The R.S.D. for 1×10−8 mol l−1 Cr(VI) is 5.3% (n=5). The detection limit estimated from 3σ for a low concentration of Cr(VI) and accumulation time of 120 s is 2×10−10 mol l−1. The method can be used for Cr(VI) determination in the presence of up to 50 mg l−1 of humic acid. The validation of the method was carried out by studying the recovery of Cr(VI) from spiked river water and by the comparison of the results of determination of Cr(VI) in a soil sample. The method cannot be used for analysis of samples containing high concentrations of chloride ions such as seawater and estuarine water.  相似文献   

5.
A method is presented for the simultaneous determination of Cr(III) and Cr(VI) in yeast using species-specific double-spike isotope dilution (SSDSID) with anion-exchange liquid chromatography (LC) separation and sector field inductively coupled plasma mass spectrometric (SF-ICP-MS) detection. Total Cr is quantitated using ID SF-ICP-MS. Samples were digested on a hot plate at 95±2 °C for 6 h in an alkaline solution of 0.5 M NaOH and 0.28 M Na2CO3 for the determination of Cr(III) and Cr(VI), whereas microwave-assisted decomposition with HNO3 and H2O2 was used for the determination of total Cr. Concentrations of 2,014±16, 1,952±103 and 76±48 mg kg−1 (one standard deviation, n=4, 3, 3), respectively were obtained for total Cr, Cr(III) and Cr(VI) in the yeast sample. Significant oxidation of Cr(III) to Cr(VI) (24.2±7.6% Cr(III) oxidized, n=3) and reduction of Cr(VI) to Cr(III) (37.6±6.5% Cr(VI) reduced, n=3 ) occurred during alkaline extraction and subsequent chromatographic separation at pH 7. Despite this significant bidirectional redox transformation, quantitative recoveries for both Cr(III) and Cr(VI) were achieved using the SSDSID method. In addition, mass balance between total Cr and the sum of Cr(III) and Cr(VI) concentrations was achieved. Method detection limits of 0.3, 2 and 30 mg kg−1 were obtained for total Cr, Cr(VI) and Cr(III), respectively, based on a 0.2-g sub-sample.  相似文献   

6.
Speciation of Cr(III) and Cr(VI) can be attained by flow injection analysis with amperometric detection. Cr(VI) is reduced in an acidic medium to Cr(III) with a glassy carbon electrode at —0.1 V vs. Ag/AgCl and the current is recorded. Cr(III) is oxidised on-line to Cr(VI) with alkaline hydrogen peroxide solution. From the difference of the total chromium and Cr(VI), the amount of Cr(III) was obtained. A linear calibration curve for Cr(VI) was obtained for the concentration ranges 0.01-5.0ppm of Cr(VI) and we have calculated the limit of determination to be about 0.5ppb. We have studied the degree of reproducibility obtained using the solid electrodes under various conditions. The influence of flow rate, coil length, interfenences and the extent of reaction were studied.  相似文献   

7.
A rapid, sensitive and selective procedure for determination of Cr(III) and Cr(VI) in environmental and industrial liquid samples via preconcentration with ammonium pyrrolidine dithiocarbamate (APDC) and determination by means of the EDXRF was described. The effect of pH in the range of 3-11 on the recovery of Cr(III) and Cr(VI) has been investigated separately and in combination of these two species. The influence of organic matter, carbonate species and elements V, Mn and Fe on the recovery of each chromium specie (separately/in combination) over whole pH range was also tested in order to simulate condition occurring in natural waters that usually contain certain amount of dissolved organic matter and carbonate ions. Cr(VI) and Cr(III) have shown different behaviors in reaction with APDC at different pH ranges and therefore it is possible to separate those two species. It was found that Cr(VI) creates complex with APDC only in the pH range from 3 to 5 with quantitative recovery (app. 98%) at pH 3, but there was no recovery of Cr(III) at that pH. On the contrary, in pH range from 6 to 11, reaction with Cr(III) and APDC reviled that the only reaction product is Cr(OH)3 instead of the expected Cr(III)-APDC complex. All reaction products were characterized by IR spectroscopy.  相似文献   

8.
Occupational exposure to Cr(VI) causes various effects including deep skin ulcerations. Its action mechanisms are not fully understood. In the present study, the evaluation of human dermal fibroblasts heat production was monitored, using microcalorimetry. as part of Cr(VI) toxicity. In control cells, normal heat production was 15±5 pW/cell. Regardless of the Cr(VI) concentration tested (0 to 500 μM), heat production was inhibited over time periods ranging from 3 to 25 h. These results could be correlated with cell mortality and the IC50 for Cr(VI) was 29±4 μM. In the WST-1 bioassay, the IC50 was 35±5 μM (no statistical difference). Thus, Cr(VI) altered the metabolism of the fibroblasts, and led to cellular death. Microcalorimetry can be a useful tool for determining the toxic effect of suspect compounds implicated in the occurrence of pathologies.  相似文献   

9.
This study describes the use of banana peel, a commonly produced fruit waste, for the removal of Cr(VI) from industrial wastewater. The parameters pH, contact time, initial metal ion concentration, and temperature were investigated and the conditions resulting in rapid and efficient adsorption (95% within 10 min) were determined. The binding of metal ions was found to be pH dependent with the optimal sorption occurring at pH 2. The retained species were eluted with 5 mL of 2 M H2SO4. To elucidate the mechanism of the process, total amounts of chromium and Cr(VI) were analyzed using flame atomic absorption and ultraviolet–visible (UV–vis) spectroscopic techniques, respectively. The Langmuir and Dubinin–Radushkevich (D–R) isotherms were used to describe the partitioning behavior for the system at different temperatures. Kinetics and thermodynamics of Cr(VI) removal by banana peel were also studied. The influence of diverse ions on the sorption behavior revealed that only Fe(II) ions (of those tested) suppressed the sorption of Cr(VI) ions to some extent. The method was applied for the removal of Cr(VI) from industrial wastewater.  相似文献   

10.
Magnetic biochar, as an adsorbent, was synthesized by a single step method, where iron salt was directly mixed with pinewood sawdust by chemical co-precipitation and subsequently pyrolyzed at 700°C for Cr (VI) removal from aqueous solution. The effects of some important parameters including adsorbent dosage (0.4–2.8?g/L), pH (1–10) of the solution, contact time (0–1440 minutes), initial concentration (30–120?mg/L), and temperature (20–40°C) were investigated in batch experiments. Both pre- and post-adsorbents were characterized by SEM-EDX and XPS to investigate the adsorption mechanism. The maximum adsorption capacity of the tested magnetic biochar under the certain experimental conditions determined as optimal was 42.7?mg/g for Cr (VI). The adsorption data were proved to be suitable for the pseudo-second order model for kinetics and the Langmuir model for isotherms with correlation R2?=?0.9996 andR2?>?0.9980, respectively, after fitting with four kinetic models (pseudo-first order, pseudo-second order, W-M model, and Elovich) and three isotherm models (Langmuir, Freundlich, and Temkin). The characteristic analyses further verified that the efficient particle was a mixture of iron oxides in essence, and it had a strong effect on the spontaneous and endothermic adsorption process.  相似文献   

11.
Feasibility and limitations of direct coupling of high performance liquid chromatographic (HPLC) separation to microwave induced plasma (MIP)-optical emission spectrometry (OES) for elementspecific detection was tested and compared to inductively coupled plasma (ICP)-optical emission spectrometric detection on the basis of the Cr(III)/Cr(VI) speciation analysis of water samples. Coupling was performed by a hydraulic high pressure nebulizer (HHPN) radiative-heating/watercooling interface which provides about 20 % and 80 % aerosol yield in the case of helium and argon carrier gases, respectively. Desolvation efficiency of aqueous solutions was approximately 80 %. Applying the ion-pair HPLC separation, the organic eluents and reagents in the MIP cause a 50–75 % signal suppression for Cr(VI) and 25–50 % for Cr(III). In a pure aqueous solution the MIP Cr(VI) signal was by 20 % lower than that of Cr(III). These effects were lower using the ICP source, but they cannot be neglected. Easily ionizable matrix elements (Na, Ca) can cause 70 % signal suppression in the MIP, and 20 % in the ICP. Therefore, species dependent calibration is required in both cases. In the case of HPLC detection by MIP-OES, the detection limit was 13 ng for Cr(III), and 18 ng for Cr(VI). Using the ICP-OES detection, the detection limit was 0.2 ng for Cr (III) and 0.4 ng for Cr (VI). The linear dynamic ranges in both cases were two orders of magnitude. Presented at the XVIIIth Slovak Spectroscopic Conference, Spišská Nová Ves, 15–18 October 2006.  相似文献   

12.
The aim of the research on Cr-speciation in plasma is to study the distribution of Cr over the plasma proteins. Cr is known to be mainly bound to transferrin and albumin. Therefore, a suitable separation procedure was developed for the two proteins. It consisted of a combination of FPLC cation and anion exchange, ensuring a complete resolution of both proteins and a total recovery of the Cr.In order to investigate the environmental impact of Cr(III) and Cr(VI) discharges, an aqueous reference material is needed to assess the quality of measurement between different laboratories. A pilot study was initiated to investigate the stability of a Cr(III) and Cr(VI) mixture in a bicarbonate/ carbonate buffer. Different parameters liable to influence the stability of the solutions have been investigated.  相似文献   

13.
This study aimed to explore the co-removal effect and mechanism of Cr(VI) and Cd(II) with an optimized synthetic material. The toxicity and accumulation characteristics of Cr(VI) and Cd(II) encountered in wastewater treatment areas present significant challenges. In this work, a rational assembly of sulfide-modified nanoscale zero-valent iron (SnZVI) was introduced into a biochar (BC), and a Cr(VI)–Cd(II) binary system adsorbent with high efficiency was synthesized. When the preparation temperature of the BC was 600 °C, the molar ratio of S/Fe was 0.3, the mass ratio of BC/SnZVI was 1, and the best adsorption capacities of BC-SnZVI for Cr(VI) and Cd(II) in the binary system were 58.87 mg/g and 32.55 mg/g, respectively. In addition, the adsorption mechanism of BC-SnZVI on the Cr(VI)-Cd(II) binary system was revealed in depth by co-removal experiments, indicating that the coexistence of Cd(II) could promote the removal of Cr(VI) by 9.20%, while the coexistence of Cr(VI) could inhibit the removal of Cd(II) by 43.47%. This work provides a new pathway for the adsorption of Cr(VI) and Cd(II) in binary systems, suggesting that BC-SnZVI shows great potential for the co-removal of Cr(VI) and Cd(II) in wastewater.  相似文献   

14.
The biosorption by cork powder is considered as a promising method for heavy metal removal from industrial waste waters such as chromium tanning factories. The aim of this study is to evaluate the efficiency extent of this method using cork powder as a biosorbent for Cr(VI). The Fourier Transform Infrared spectroscopy (FTIR) analysis permits to distinguish the type of functional groups likely to participate in metal binding. A linear form of BET isotherms for all the three used temperatures (i.e., 25, 35 and 45 °C) and a pseudo-second-order equation of adsorption kinetics are obtained. Other experimental results highlight the meaningful influence of parameters such as contact time, pH, concentration of Cr(VI) and the adsorbent particle size on Cr(VI) adsorption. 97% of Cr(VI) has been removed under definite conditions particularly a particle size of diameter d < 0.08 mm and pH of 2–3 values.  相似文献   

15.
A lab-made hybrid mesoporous solid was employed in a flow injection solid phase extraction electrothermal atomic absorption spectrometric (FI–SPE–ETAAS) system for the selective retention of Cr(VI). The solid was prepared by co-condensation of sodium tetraethylortosilicate and 3-aminopropyltriethoxysilane by sol–gel methodology and one-pot synthesis and characterized by Fourier transform infrared spectroscopy, X ray diffraction spectroscopy, and scanning electronic microscopy. Adsorption capacities at different pH values of both, Cr(VI) and Cr(III), were also measured in order to obtain the optimum retention for Cr(VI) with no interference of Cr(III). The maximum capacity of adsorption (4.35 mmol g 1) was observed for pH values between 2–3, whilst Cr(III) was found to remain in solution (adsorption capacity = 0.007 mmol g 1). Then, a microcolumn (bed volume: 7.9 µL) was filled with the solid and inserted in the FI–ETAAS system for analytical purposes. Since the analyte was strongly retained by the filling in the anionic form, 0.1 mol L 1 hydroxylammonium chloride in 1 mol L 1 hydrochloric acid was selected as eluent due to its redox characteristics. In this way, the sorbed Cr(VI) was easily released in the cationic form. The enrichment factor (EF) was found as a compromise between sensitivity and sample throughput and a value of 27 was obtained under optimized conditions: pH 2, sample loading 2 mL min 1 (60 s), elution flow rate 0.5 ml min 1 (eluent volume: 75 μL).  相似文献   

16.
Both the accumulation of coal gangue and potentially toxic elements in aqueous solution have caused biological damage to the surrounding ecosystem of the Huainan coal mining field. In this study, coal gangue was used to synthesize calcium silicate hydrate (C-S-H) to remove Cr(VI) and Cu(II)from aqueous solutions and aqueous solution. The optimum parameters for C-S-H synthesis were 700 °C for 1 h and a Ca/Si molar ratio of 1.0. Quantitative sorption analysis was done at variable temperature, C-S-H dosages, solution pH, initial concentrations of metals, and reaction time. The solution pH was precisely controlled by a pH meter. The adsorption temperature was controlled by a thermostatic gas bath oscillator. The error of solution temperature was controlled at ± 0.3, compared with the adsorption temperature. For Cr(VI) and Cu(II), the optimum initial concentration, temperature, and reaction time were 200 mg/L, 40 °C and 90 min, pH 2 and 0.1 g C-S-H for Cr(VI), pH 6 and 0.07 g C-S-H for Cu(II), respectively. The maximum adsorption capacities of Cr(VI) and Cu(II) were 68.03 and 70.42 mg·g−1, respectively. Furthermore, the concentrations of Cu(II) and Cr(VI) in aqueous solution could meet the surface water quality standards in China. The adsorption mechanism of Cu(II) and Cr(VI) onto C-S-H were reduction, electrostatic interaction, chelation interaction, and surface complexation. It was found that C-S-H is an environmentally friendly adsorbent for effective removal of metals from aqueous solution through different mechanisms.  相似文献   

17.
A selective novel reverse flow injection system with chemiluminescence detection (rFI-CL) for the determination of Cr(VI) in presence of Cr(III) with Dichlorotris (1,10-phenanthroline)ruthenium(II), (Ru(phen)3Cl2), is described in this work. This new method is based on the oxidation capacity of Cr(VI) in H2SO4 media. First, the Ruthenium(II) complex is oxidized to Ruthenium(III) complex by Cr(VI) and afterwards it is reduced to the excited state of the Ruthenium(II) complex by a sodium oxalate solution, emitting light inside the detector. The intensity of chemiluminescence (CL) is proportional to the concentration of Cr(VI) and, under optimum conditions, it can be determined over the range of 3-300 μg L−1 with a detection limit of 0.9 μg L−1. The RSD was 8.4% and 1.5% at 5 and 50 μg L−1, respectively. For the rFI-CL method various analytical parameters were optimized: flow rate (1 mL min−1), H2SO4 carrier concentration (20% w/V), Ru(phen)3Cl2 concentration (5 mM) and sodium oxalate concentration (0.1 M). The effect of Cr(III), Fe(III), Al(III), Cd(II), Zn(II), Hg(II), Pb(II), Ca(II) and Mg(II), was studied. The method is highly sensitive and selective, allowing a fast, on-line determination of Cr(VI) in the presence of Cr(III). Finally, the method was tested in four different water samples (tap, reservoir, well and mineral), with good recovery percentage.  相似文献   

18.
In this work, polyacrylonitrile/aminated polymeric nanosphere (PAN/APN) nanofibers were prepared by electrospinning of monodispersed aminated polymeric nanospheres (APNs) for removal of Cr(VI) from aqueous solution. Characterization results showed that obtained PAN/APNs possessed nitrogen functionalization. Furthermore, the adsorption application results indicated that PAN/APN nanofibers exhibited a high adsorption capacity of 556 mg/g at 298 K for Cr(VI) removal. The kinetic data showed that the adsorption process fits the pseudo-second order. A thermodynamic study revealed that the adsorption of Cr(VI) was spontaneous and endothermic. The coexisting ions Na+, Ca2+, K+, Cl, NO3 and PO43− had little influence on Cr(VI) adsorption, while SO42− in solution dramatically decreased the removal performance. In the investigation of the removal mechanism, relative results indicated that the adsorption behavior possibly involved electrostatic adsorption, redox reaction and chelation. PAN/APN nanofibers can detoxify Cr(VI) to Cr(III) and subsequently chelate Cr(III) on its surface. The unique structure and nitrogen functionalization of PAN/APN nanofibers make them novel and prospective candidates in heavy metal removal.  相似文献   

19.
A flow-based method for the spectrophotometric determination of chromium (VI) in recreational waters with different salinities was developed. Chromium can occur in the environment in different oxidation states with different related physiological properties. With regard to chromium, the speciation is particularly important, as the hexavalent chromium is considered to be carcinogenic. To achieve that purpose, the use of the diphenylcarbazide (DPC) selective colored reaction with the hexavalent chromium was the chosen strategy. The main objective was to develop a direct and simple spectrophotometric method that could cope with the analysis of different types of environmental waters, within different salinity ranges (fresh to marine waters). The potential interference of metal ions, that can usually be present in environmental waters, was assessed and no significant interferences were observed (<10%). For a complete Cr(VI) determination (three replicas) cycle, the corresponding reagents consumption was 75 µg of DPC, 9 mg of ethanol and 54 mg of sulfuric acid. Each cycle takes about 5 min, including the system clean-up. The limit of detection was 6.9 and 12.2 µg L−1 for waters with low and high salt content, respectively. The method was applied for the quantification of chromium (VI) in both fresh and marine water, and the results were in agreement with the reference procedure.  相似文献   

20.
Manuela L. Kim 《Talanta》2009,77(3):1068-93
An hybrid mesoporous material synthesised in our laboratories for solid phase extraction (SPE) in flow through systems has been used for analytical purposes. The solid was obtained from mesoporous silica MCM-41 functionalized with 3-aminopropyltriethoxy silane by Sol-Gel methodology. In order to exploit the large sorption capacity of the material together with the possibility of modeling it for anions retention, a microcolumn (MC) filled with the solid was inserted in a flow system for preconcentration of Cr(VI) and its determination at ultratrace levels in natural waters. The analytical methodology involved a reverse flow injection system (rFI) holding a MC filled with the solid for the analyte extraction. Elution and colorimetric detection were carried out with 1-5 diphenylcarbazide (DPC) in sulfuric acid. DPC produced the reduction of Cr(VI) to Cr(III) together with the generation of a cationic red complex between Cr(III) and 1-5 diphenylcarbazone which was easily eluted and detected with a visible spectrophotometer. Moreover, the filling material got ready for the next sample loading remaining unspoiled for more than 300 cycles.The effect of several variables on the analytical signal as well as the influence of cationic and anionic interferences were discussed. Particular attention was given to sulfuric acid interference since it is the required media for the complex generation.Under optimal conditions, 99.8% of Cr(VI) recovery was obtained for a preconcentration time of 120 s (sample and DPC flow rates = 1 mL min−1) and an elution volume of 250 μL. The limit of detection (3 s) was found to be 0.09 μg L−1 Cr(VI) with a relative standard deviation (n = 10, 3 μg L−1) of 1.8.Since no Cr(III) was retained by the solid material and Cr(VI) was completely adsorbed, electrothermal atomic absorption spectrometry (ET AAS) determinations of Cr(III) were also performed by simply measuring its concentration at the end of the microcolumn after Cr(VI) retention by the mesoporous solid.Applications to the determination of Cr(VI) and Cr(III) in natural waters and the validation of the methodology were also studied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号