首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Solid paraffin-based carbon paste electrodes modified with 2-aminothiazole organofunctionalized silica have been applied to the anodic stripping determination of copper ions in ethanol fuel samples without any sample treatment. The proposed method comprised four steps: (1) copper ions preconcentration at open circuit potential directly in the ethanol fuel sample; (2) exchange of the solution and immediate cathodic reduction of the absorbate at controlled potential; (3) differential pulse anodic stripping voltammetry; (4) electrochemical surface regeneration by applying a positive potential in acid media. Factors affecting the preconcentration, reduction and stripping steps were investigated and the optimum conditions were employed to develop the analytical procedure. Using a preconcentration time of 20 min and reduction time of 120 s at −0.3 V versus Ag/AgClsat a linear range from 7.5 × 10−8 to 2.5 × 10−6 mol L−1 with detection limit of 3.1 × 10−8 mol L−1 was obtained. Interference studies have shown a decrease in the interference effect according to the sequence: Ni > Zn > Cd > Pb > Fe. However, the interference effects of these ions have not forbidden the application of the proposed method. Recovery values between 98.8 and 102.3% were obtained for synthetic samples spiked with known amounts of Cu2+ and interfering metallic ions. The developed electrode was successfully applied to the determination of Cu2+ in commercial ethanol fuel samples. The results were compared to those obtained by flame atomic absorption spectroscopy by using the F-test and t-test. Neither F-value nor t-value have exceeded the critical values at 95% confidence level, confirming that there are no significant differences between the results obtained by both methods.  相似文献   

2.
3.
Fei Wang  Xiaohan Wei  Shusheng Zhang 《Talanta》2010,80(3):1198-1204
The π-A isotherms and UV-vis spectra of the transferred films suggested that the monolayer of p-tert-butylthiacalix[4]arene can coordinate with Hg2+ at the air-water surface. From these observations, a glassy carbon electrode coated with Langmuir-Blodgett film of p-tert-butylthiacalix[4] arene as a new voltammetric sensor is designed for the determination of trace amounts of Hg2+. Compared with bare glassy carbon electrode and modified glassy carbon electrode using direct coating method, the Langmuir-Blodgett film-modified electrode can greatly improve the measuring sensitivity of Hg2+. Under the selected conditions, the Langmuir-Blodgett film-modified electrode in 0.1 mol L−1 H2SO4 + 0.01 mol L−1 KCl solution shows a linear voltammetric response for Hg2+ in the range of 5.0 × 10−10 to 1.5 × 10−7 mol L−1, with a detection limit of 2.0 × 10−10 mol L−1. The proposed method was also applied to determine Hg2+ in water samples (tap, lake and river water). In addition, the fabricated electrode exhibited a distinct advantage of simple preparation, non-toxicity, good reproducibility and good stability.  相似文献   

4.
Enass M. Ghoneim 《Talanta》2010,82(2):646-652
A simple and precise square-wave adsorptive cathodic stripping voltammetry (SW-AdCSV) method has been described for simultaneous determination of Mn(II), Cu(II) and Fe(III) in water samples using a carbon paste electrode. In 0.1 mol L−1 acetate buffer (pH 5) containing 50 μmol L−1 of 2-(5′-bromo-2′-pyridylazo)-5-diethylaminophenol (5-Br-PADAP), Mn(II), Cu(II) and Fe(III) were simultaneously determined as metal-complexes with 5-Br-PADAP following preconcentration onto the carbon paste electrode by adsorptive accumulation at +1.0 V (vs. Ag/AgCl/3 M KCl). Insignificant interference from various cations (K+, Na+, Mg2+, Ca2+, Al3+, Bi3+, Sb3+, Se4+, Zn2+, Ni2+, Co2+, Cd2+, Pb2+, V5+, Ti4+ and NH4+), anions (HCO3, Cl, NO3−, SO42− and PO43−) and ascorbic acid was noticed. Limits of detection of 0.066, 0.108 and 0.093 μg L−1 and limits of quantitation of 0.22, 0.36 and 0.31 μg L−1 Mn(II), Cu(II) and Fe(III), respectively, were achieved by the described method. The described stripping voltammetry method was successfully applied for simultaneous determination of Mn(II), Cu(II) and Fe(III) in ground, tap and bottled natural water samples.  相似文献   

5.
Boron-doped diamond (BDD) films are excellent electrode materials, whose electrochemical activity for some analytes can be tuned by controlling their surface termination, most commonly either to predominantly hydrogen or oxygen. This tuning can be accomplished by e.g. suitable cathodic or anodic electrochemical pretreatments. Recently, it has been shown that amorphous carbon nitride (a-CNx) films may present electrochemical characteristics similar to those of BDD, including the influence of surface termination on their electrochemical activity toward some analytes. In this work, we report for the first time a complete electroanalytical method using an a-CNx electrode. Thus, an a-CNx film deposited on a stainless steel foil by DC magnetron sputtering is proposed as an alternative electrode for the simultaneous determination of dopamine (DA) and ascorbic acid (AA) in synthetic biological samples by square-wave voltammetry. The obtained results are compared with those attained using a BDD electrode. For both electrodes, a same anodic pretreatment in 0.1 mol L−1 KOH was necessary to attain an adequate and equivalent separation of the DA and AA oxidation potential peaks of about 330 mV. The detection limits obtained for the simultaneous determination of these analytes using the a-CNx electrode were 0.0656 μmol L−1 for DA and 1.05 μmol L−1 for AA, whereas with the BDD electrode these values were 0.283 μmol L−1 and 0.968 μmol L−1, respectively. Furthermore, the results obtained in the analysis of the analytes in synthetic biological samples were satisfactory, attesting the potential application of the a-CNx electrode in electroanalysis.  相似文献   

6.
Self-assembled monolayers of a nickel(II) complex and 3-mercaptopropionic acid on a gold electrode were obtained for determination of catechin by square wave voltammetry. The complex [NiIIL] with L = [N-(methyl)-N′-(2-pyridylmethyl)-N,N′-bis(3,5-di-tert-butyl-2-hydroxybenzyl)-1,3-propanediamine[nickel(II)] was synthesized and characterized by 1H NMR, IR, and electronic spectroscopies and electrochemical methods. The optimized conditions obtained for the electrodes were 0.1 mol L−1 phosphate buffer solution (pH 7.0), frequency of 80.0 Hz, pulse amplitude of 60.0 mV and scan increment of 10.0 mV. Under these optimum conditions, the resultant peak current on square wave voltammograms increases linearly with the concentration of catechin in the range of 3.31 × 10−6 to 2.53 × 10−5 mol L−1 with detection limits of 8.26 × 10−7 mol L−1. The relative standard deviation for a solution containing 1.61 × 10−5 mol L−1 catechin solution was 2.45% for eight successive assays. The lifetime of the Ni(II) complex-SAM-Au electrode was investigated through testing every day over 4 weeks. The results showed apparent loss of activity after 20 days. The results obtained for catechin in green tea samples using the proposed sensor and those obtained by electrophoresis are in agreement at the 95% confidence level.  相似文献   

7.
Sun D  Xie X  Cai Y  Zhang H  Wu K 《Analytica chimica acta》2007,581(1):27-31
In the presence of Nafion, single-walled carbon nanotubes (SWNTs) were easily dispersed into ethanol, resulting in a homogeneous SWNTs/Nafion suspension. After evaporating ethanol, a SWNTs/Nafion film with bifunctionality was constructed onto glassy carbon electrode (GCE) surface. Attributing to the strong cation-exchange ability of Nafion and excellent properties of SWNTs, the SWNTs/Nafion film-coated GCE remarkably enhances the sensitivity of determination of Cd2+. Based on this, an electrochemical method was developed for the determination of trace levels of Cd2+ by anodic stripping voltammetry (ASV). In pH 5.0 NaAc-HAc buffer, Cd2+ was firstly exchanged and adsorbed onto SWNTs/Nafion film surface, and then reduce at −1.10 V. During the positive potential sweep, reduced cadmium was oxidized, and a well-defined stripping peak appeared at −0.84 V, which can be used as analytical signal for Cd2+. The linear range is found to be from 4.0 × 10−8 to 4.0 × 10−6 mol L−1, and the lowest detectable concentration is estimated to be 4.0 × 10−9 mol L−1. Finally, this method was successfully employed to detect Cd2+ in water samples.  相似文献   

8.
The potential application of commercial screen-printed gold electrodes (SPGEs) for the trace determination of lead, copper, and mercury in fuel bioethanol is demonstrated. Samples were simply diluted in 0.067 mol L−1 HCl solution prior to square-wave anodic stripping voltammetry (SWASV) measurements recorded with a portable potentiostat. The proposed method presented a low detection limit (<2 μg L−1) for a 240 s deposition time, linear range between 5 and 300 μg L−1, and adequate recovery values (96–104%) for spiked samples. This analytical method shows great promise for on-site trace metal determination in fuel bioethanol once there is no requirement for sample treatment or electrode modification.  相似文献   

9.
We report about the use of carbon paste electrode modified with kaolinite for analytical detection of trace lead(II) in domestic water by differential pulse voltammetry. Kaolinite clay was modified with tripolyphosphate (TPP) by impregnation method. The results show that TPP in kaolinite clay plays an important role in the accumulation process of Pb(II) on the modified electrode surface. The electroanalytical procedure for determination of Pb(II) comprised two steps: chemical accumulation of the analyte under open-circuit conditions, followed by electrochemical detection of the pre-concentrated species using differential pulse voltammetry. The analytical performance of this system has been explored by studying the effects of preconcentration time, carbon paste composition, pH, supporting electrolyte concentration, as well as interferences due to other ions. The calculated detection limit based on the variability of a blank solution (3sb criterion) for 10 measurements was 8.4 × 10−8 mol L−1, and the sensitivity determined from the slope of the calibration graph was 0.910 mol L−1. The reproducibility (RSD) for five replicate measurements at 1.0 mg L−1 lead level was 1.6%. The results indicate that this electrode is sensitive and effective for the determination of Pb2+.  相似文献   

10.
A preconcentration method based on the adsorption of palladium-dimethylglyoxime (DMG) complex on silica gel for the determination of palladium at trace levels by atomic absorption spectrometry (AAS) has been developed. The retained palladium as Pd(DMG)2 complex was eluted with 1 mol l−1 HCl in acetone. The effect of some analytical parameters such as pH, amount of reagent and the sample volume on the recovery of palladium was examined in synthetic solutions containing street dust matrix. The influence of some matrix ions on the recovery of palladium was investigated by using the developed method when the elements were present both individually and together. The results showed that 2500 μg ml−1 Na+, K+, Mg2+, Al3+ and Fe3+; 5000 μg ml−1 Ca2+ ; 500 μg ml−1 Pb2+; 125 μg ml−1 Zn2+; 50 μg ml−1 Cu2+ and 25 μg ml−1 Ni2+ did not interfere with the palladium signal. At the optimum conditions determined experimentally, the recovery for palladium was found to be 95.3±1.2% at the 95% confidence level. The relative standard deviation and limit of detection (3s/b) of the method were found to be 1.7% and 1.2 μg l−1, respectively. In order to determine the adsorption behaviour of silica gel, the adsorption isotherm of palladium was studied and the binding equilibrium constant and adsorption capacity were calculated to be 0.38 l mg−1 and 4.06 mg g−1, respectively. The determination of palladium in various samples was performed by using both flame AAS and graphite furnace AAS. The proposed method was successfully applied for the determination of palladium in the street dust, anode slime, rock and catalytic converter samples.  相似文献   

11.
This paper introduces a simple, fast and reliable electroanalytical method for differential-pulse polarography based on electrochemical reduction at a dropping mercury electrode. The method was validated for the determination of 2-ethylhexyl-4-methoxycinnamate (EHMC) alone and in association with 4-methylbenzylidene camphor (MBC) or 2-hydroxy-4-methoxybenzophenone (BENZ-3) in samples of commercial cosmetic preparations. The supporting electrolyte that provided the best-defined and most intense peak current for EHMC determination was Britton-Robinson buffer (pH 4.0) in the presence of a cationic surfactant. Under optimized conditions, EHMC exhibited one single peak of reduction at −1.49 V versus Ag/AgCl. A limit of detection of 3.76 × 10−8 mol L−1 and a limit of quantitation of 1.25 × 10−7 mol L−1 were found for the pure EHMC standard. A good average recovery rate was reached for all the samples analyzed.  相似文献   

12.
Mehretie S  Admassie S  Hunde T  Tessema M  Solomon T 《Talanta》2011,85(3):1376-1382
A sensitive and selective method was developed for the determination of N-acetyl-p-aminophenol (APAP) and p-aminophenol (PAP) using poly(3,4-ethylenedioxythiophene) (PEDOT)-modified glassy carbon electrode (GCE). Cyclic voltammetry and differential pulse voltammetry were used to investigate the electrochemical reaction of APAP and PAP at the modified electrode. Both APAP and PAP showed quasireversible redox reactions with formal potentials of 367 mV and 101 mV (vs. Ag/AgCl), respectively, in phosphate buffer solution of pH 7.0. The significant peak potential difference (266 mV) between APAP and PAP enabled the simultaneous determination both species based on differential pulse voltammetry. The voltammetric responses gave linear ranges of 1.0 × 10−6-1.0 × 10−4 mol L−1 and 4.0 × 10−6-3.2 × 10−4 mol L−1, with detection limits of 4.0 × 10−7 mol L−1 and 1.2 × 10−6 mol L−1 for APAP and PAP, respectively. The method was successfully applied for the determination of APAP and PAP in pharmaceutical formulations and biological samples.  相似文献   

13.
Yue Liu  Zhi-Qiang Wu 《Talanta》2009,79(5):1464-57
Hexahistidine-tagged protein functionalized multi-walled carbon nanotubes (MWCNTs/6His-tagged protein) were prepared and characterized by ultraviolet-visible spectrophotometry and atomic force microscopy. Both static and dynamical adsorption experiments showed that the MWCNTs/6His-tagged protein served as good sorbent for the solid-phase extraction of Cu2+ and Ni2+. Effective on-line sorption of Cu2+ and Ni2+ on the MWCNTs/6His-tagged protein packed microcolumn was achieved in a pH range of 3.0-4.5 and 4.5-6.0, respectively. The retained Cu2+ and Ni2+ were efficiently eluted with 0.2 mol L−1 imidazole-HCl solution for on-line flame atomic absorption spectrometric determination. The MWCNTs/6His-tagged protein exhibited fairly fast kinetics for the sorption of Cu2+ and Ni2+, and offered up to 20,000 and 1800 times improvement in the tolerable concentrations of co-existing ions over the MWCNTs for solid-phase extraction of Cu2+ and Ni2+, respectively. On-line solid-phase extraction at a flow rate of 5.0 mL min−1 for 60 s gave an enhancement factor of 29 for Cu2+ and 28 for Ni2+, a sample throughput of 45 h−1, and a detection limit (3s) of 0.31 μg L−1 for Cu2+ and 0.63 μg L−1 for Ni2+. The precision for 11 replicate measurements was 2.4% for 10 μg L−1 Cu2+, and 2.5% for 15 μg L−1 Ni2+.  相似文献   

14.
A graphene, chitosan and Fe3O4 nanoparticles (nano-Fe3O4) modified glassy carbon electrode (graphene-chitosan/nano-Fe3O4/GCE) was fabricated. The modified electrode was characterized by scanning electron microscope and electrochemical impedance spectroscopy. The electrochemical oxidation behavior of guanosine was investigated in pH 7.0 phosphate buffer solution by cyclic voltammetry and differential pulse voltammetry. The experimental results indicated that the modified electrode exhibited an electrocatalytic and adsorptive activities towards the oxidation of guanosine. The transfer electron number (n), transfer proton number (m) and electrochemically effective surface area (A) were calculated. Under the optimized conditions, the oxidation peak current was proportional to guanosine concentration in the range of 2.0 × 10−6 to 3.5 × 10−4 mol L−1 with the correlation coefficient of 0.9939 and the detection limit of 7.5 × 10−7 mol L−1 (S/N = 3). Moreover, the modified electrode showed good ability to discriminate the electrochemical oxidation response of guanosine, guanine and adenosine. The proposed method was further applied to determine guanosine in spiked urine samples and traditional Chinese medicines with satisfactory results.  相似文献   

15.
A carboxyl functionalized graphene oxide (GO-COOH) and electropolymerized ploy-l-lysine (PLLy) modified glassy carbon electrode (GCE) was fabricated and used for the construction of an electrochemical deoxyribonucleic acid (DNA) biosensor. The NH2 modified probe ssDNA sequences were immobilized on the surface of GO-COOH/PLLy/GCE by covalent linking with the formation of amide bonds, which was stable and furthur hybridized with the target ssDNA sequence. Differential pulse voltammetry (DPV) was used to monitor the hybridization events with methylene blue as electrochemical indicator, which gave a sensitive reduction peak at −0.287 V (vs. SCE). Under the optimal conditions the reduction peak current was proportional to the concentration of tlh gene sequence in the range from 1.0 × 10−12 to 1.0 × 10−6 mol L−1 with a detection limit as 1.69 × 10−13 mol L−1 (3σ). The polymerase chain reaction products of tlh gene from oyster samples were detected with satisfactory results, indicating the potential application of this electrochemical DNA sensor.  相似文献   

16.
Hu YF  Zhang ZH  Zhang HB  Luo LJ  Yao SZ 《Talanta》2011,84(2):305-313
A sensitive and selective electrochemical sensor based on a polyaniline modified carbon electrode for the determination of l-phenylalanine has been proposed by utilizing β-cyclodextrin (β-CD) incorporated multi-walled carbon nanotube (MWNT) and imprinted sol-gel film. The electrochemical behavior of the sensor towards l-phenylalanine was investigated by cyclic voltammetry (CV), differential pulse voltammetry (DPV), and amperometric i-t curve. The surface morphologies of layer-by-layer assembly electrodes were displayed by scanning electron microscope (SEM). The response mechanism of the imprinted sensor for l-phenylalanine was based on the inclusion interaction of β-CD and molecular recognition capacity of the imprinted film for l-phenylalanine. A linear calibration plot was obtained covering the concentration range from 5.0 × 10−7 to 1.0 × 10−4 mol L−1 with a detection limit of 1.0 × 10−9 mol L−1. With excellent sensitivity, selectivity, stability, reproducibility and recovery, the electrochemical imprinted sensor was used to detect l-phenylalanine in blood plasma samples successfully.  相似文献   

17.
The preparation and electrochemical characterization of a carbon paste electrode modified with layered birnessite-type manganese oxide for use as a sodium sensor is described. The effects of powder synthesis process (sol-gel and redox precipitation) for birnessite on the electrochemical activity of the sensor was investigated by cyclic voltammetry. The carbon paste electrode modified with birnessite-type manganese oxide that was synthesized by the sol-gel method showed a best electrochemical for sodium ions. The detection is based on the measurement of anodic current generated by oxidation of Mn(III) to Mn(IV) at the surface of the electrode and consequently the sodium ions extraction into the birnessite structure. The best voltammetric response was obtained for an electrode composition of 15% (w/w) birnessite oxide in the paste, a TRIS buffer solution of pH 8.0 and a scan rate of 50 mV s−1. A sensitive linear voltammetric response for sodium ions was obtained in the concentration range of 7.89 × 10−5 to 3.49 × 10−4 mol L−1 with a slope of 37.5 μA L mmol−1 and a detection limit (3σ/slope) of 3.43 × 10−5 mol L−1 using cyclic voltammetry. Under the working conditions, the proposed method was successfully applied to determination of sodium ions in urine samples.  相似文献   

18.
M. Ghiaci  R.J. Kalbasi 《Talanta》2007,73(1):37-45
The main purpose of this study is to develop an inexpensive, simple, selective and especially highly selective modified mixed-oxide carbon paste electrode (CPE) for voltammetric determination of Pb(II). For the preliminary screening purpose, the catalyst was prepared by modification of SiO2-Al2O3 mixed-oxide and characterized by TG, CHN elemental analysis and FTIR spectroscopy. Using cyclic voltammetry the electroanalytical characteristics of the catalyst have been determined, and consequently the modified mixed-oxide carbon paste electrode was constructed and applied for determination of Pb(II). The electroanalytical procedure for determination of the Pb(II) comprises two steps: the chemical accumulation of the analyte under open-circuit conditions followed by the electrochemical detection of the preconcentrated species using differential pulse anodic stripping voltammetry. During the preconcentration step, Pb(II) was accumulated on the surface of the modifier by the formation of a complex with the nitrogen atoms of the pyridyl groups in the modifier. The peak currents increases linearly with Pb(II) concentration over the range of 2.0 × 10−9 to 5.2 × 10−5 mol L−1 (r2 = 0.9995).The detection limit (three times signal-to-noise) was found to be 1.07 × 10−9 mol L−1 Pb(II). The chemical and instrumental parameters have been optimized and the effect of the interferences has been determined. The Proposed method was used for determination of lead ion in the real samples.  相似文献   

19.
Tian L  Liu L  Chen L  Lu N  Xu H 《Talanta》2005,66(1):130-135
A vanadium oxide-modified glassy carbon electrode was simply and conveniently fabricated by casting vanadium tri(isoproxide) oxide (VO(OC3H7)3) and poly(propylene carbonate) (PPC) onto the glassy carbon electrode surface. The electrochemical properties of iodide at the VO(OC3H7)3-PPC film-modified glassy carbon electrode were investigated by cyclic voltammetry, and an anodic peak was observed at approximately +0.71 V (vs. SCE). Based on this, a sensitive and convenient electrochemical method was proposed for the determination of iodide. Flow injection amperometry (FIA) exhibited a good linear relationship with the concentration of iodide in the range of 5 × 10−7 mol L−1 and 1 × 10−3 mol L−1, and the detection limit was 1 × 10−7 mol L−1. Quantitative recovery of iodide in synthetic samples has been obtained and the interferences from different cations and anions have been studied. The method has been successfully applied to the determination of iodide in dry edible seaweed. The concentrations of iodide measured by this method are in good agreement with those obtained by spectrophotometric method.  相似文献   

20.
Zhao L  Tao Y  Yang X  Zhang L  Oyama M  Chen X 《Talanta》2006,70(1):104-110
Electrogenerated chemiluminescences (ECLs) of alkaloids, such as berberine, trigonelline, allantoin and betaine, were studied in an aqueous alkaline buffer solution (pH 9.5), based on tris(2,2′-bipyridine)ruthenium(II) [Ru(bpy)32+] immobilized in organically modified silicates (ORMOSILs) film on a glassy carbon electrode (GCE). The immobilized Ru(bpy)32+ showed good electrochemical and photochemical activities. In a flow system, the eluted alkaloids were oxidized on the modified GCE, and reacted with immobilized Ru(bpy)32+ at the potential of +1.50 V (versus Ag/AgCl). The luminescence with λmax 610 nm was caused by a reaction of electrolytically formed Ru(bpy)33+ with an oxidized amine group to generate Ru(bpy)32+*. The determination limit was 5 × 10−6 mol L−1, 8 × 10−6 mol L−1, 2.0 × 10−5 mol L−1 and 5.0 × 10−5 mol L−1 for berberine, trigonelline, allantoin and betaine at S/N 3, respectively. In addition, the factors affecting the determination of the four alkaloids were also studied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号