首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A chiral chromatography method enabling the simultaneous diastereo- and enantioseparation of Nα-Boc-N4-(hydroorotyl)-4-aminophenylalanine [Boc-Aph(Hor)-OH, 1] was optimized with a quinine-based zwitterionic stationary phase. The polar-ionic eluent system consisting of ACN:MeOH:water—49.7:49.7:0.6 (v/v/v) with formic acid (4.0 mM) and diethylamine (2.5 mM), allowed the successful separation of the four acid stereoisomers: αd,d-/d,l-1 = 1.08; αd,l-/l,d-1 = 1.08; αl,d-/l,l-1 = 1.40.  相似文献   

2.
Manuela Kim 《Talanta》2007,72(3):1054-1058
A simple and sensitive HPLC post-derivatization method with colorimetric detection has been developed for the determination of N-nitroso glyphosate in samples of technical glyphosate. Separation of the analyte was accomplished using an anionic exchange resin (2.50 mm × 4.00 mm i.d., 15 μm particle size, functional group: quaternary ammonium salt) with Na2SO4 0.0075 M (pH 11.5) (flow rate: 1.0 mL min−1) as mobile phase. After separation, the eluate was derivatized with a colorimetric reagent containing sulfanilamide 0.3% (w/v), [N-(1-naphtil)ethilendiamine] 0.03% (w/v) and HCl 4.5 M in a thermostatized bath at 95 °C. Detection was performed at 546 nm. All stages of the analytical procedure were optimized taking into account the concept of analytical minimalism: less operation times and costs; lower sample, reagents and energy consumption and minimal waste. The limit of detection (k = 3) calculated for 10 blank replicates was 0.04 mg L−1 (0.8 mg kg−1) in the solid sample which is lower than the maximum tolerable accepted by the Food and Agriculture Organization of the United Nations.  相似文献   

3.
A capillary electrophoresis (CE) and a high performance liquid chromatography (HPLC) method are described for the simultaneous determination of ethylenediaminetetraacetic acid (EDTA), S,S′-ethylenediaminedisuccinic acid (EDDS) and R,S-iminodisuccinic acid (IDS) complexing agents as their Fe(III) complexes in cosmetics like shower cream and foam bath. The non-biodegradable EDTA is used in combination with biodegradable analogues like EDDS and IDS in many commercial products. The HPLC method involves separation by reversed-phase ion pair chromatography on a C18 column using methanol-formate buffer (20 mM tetrabutylammonium hydrogen sulfate, 15 mM sodium formate adjusted to pH 4.0 with formic acid) (10:90, v/v) as mobile solvent at a flow rate of 0.8 mL min−1 at 24 °C using UV detection at 240 nm. The CE separation was performed in a fused silica capillary of 50 μm i.d. with the total length of 50 cm with a 10 mM MES and MOPSO (pH 5.5) at an applied voltage of −25 kV. The samples were introduced by applying a 50 mbar pressure for 2 s. Absorbances at 215 and 225 nm were monitored for the detection of the complexes. The methodology performance of the two methods was evaluated in terms of linearity, limit of detection (LOD), limit of quantitation (LOQ) and reproducibility. The LOD values obtained from HPLC are low when compared with CE. The applicability of both the methods was demonstrated for the analysis of cosmetic products such as shower cream and foam bath. The results obtained by both CE and HPLC were found to be comparable and in good agreement.  相似文献   

4.
The enantiomeric purity determination of a synthetic intermediate of new 3,4-dihydro-2,2-dimethyl-2H-1-benzopyrans, i.e. 4-amino-2,2-dimethyl-6-ethoxycarbonylamino-3,4-dihydro-2H-1-benzopyran, was successfully carried out using an anionic cyclodextrin (CD) derivative combined with a chiral ionic liquid (IL). In order to obtain high resolution and efficiency values, the addition of a chiral IL, i.e. ethylcholine bis(trifluoromethylsulfonyl)imide (EtChol NTf2), to the background electrolyte containing heptakis(2,3-di-O-methyl-6-O-sulfo)-β-CD (HDMS-β-CD) was found to be essential. A simultaneous increase in separation selectivity and enantioresolution seems to indicate a synergistic effect of HDMS-β-CD and EtChol NTf2. The best enantioseparation of the key intermediate was achieved using a methanolic solution of 0.75 M formic acid, 10 mM ammonium formate, 1.5 mM HDMS-β-CD and 5 mM EtChol NTf2. Levamisole was selected as internal standard. The optimized conditions allowed the determination of 0.1% of each enantiomer in the presence of its stereoisomer using the method of standard additions. The NACE method was then fully validated with respect to selectivity, response function, trueness, precision, accuracy, linearity and limits of detection and quantification.  相似文献   

5.
Kynurenine (KYN), a tryptophan metabolite, is a crucial compound for modulating neurotransmission because it can be metabolized in vivo into both quinolinic acid and kynurenic acid, which are the agonist and antagonist, respectively, of N-methyl-d-aspartate receptor. For the highly sensitive detection of KYN by high-performance liquid chromatography (HPLC), a fluorescence derivatization of KYN with a benzofurazan-type fluorogenic reagent, 4-N,N-dimethylaminosulfonyl-7-fluoro-2,1,3-benzoxadiazole (DBD-F) was investigated in the present study. KYN was derivatized with DBD-F (DBD-KYN) at 60 °C for 30 min, and separated on an octadecylsilica column with a gradient elution of the mobile phase, which consists of 0.1% formic acid in acetonitrile/methanol/water. DBD-KYN was detected fluorimetrically at 553 nm with an excitation wavelength of 431 nm. The limits of detection and quantification were approximately 0.30 pmol [signal-to-noise ratio (S/N) 3] and 1.0 pmol (S/N, 10) on column, respectively. Plasma KYN levels were successfully determined using 10 μL of rat plasma with satisfactory precision and accuracy. Intra- and inter-day precisions and accuracies were 1.7-6.8%, and −10 to 9.6%, respectively. KYN levels in plasma of male Sprague-Dawley rats (7 weeks old) were approximately 2.4 ± 0.32 μmol L−1 (n = 4). The proposed HPLC method was applied to determine KYN levels in the plasma of ketamine-treated rats—the animal model of schizophrenia.  相似文献   

6.
The method for simultaneous separation and determination of trace monoadenosine and diadenosine monophosphate (i.e. 2′-AMP, 3′-AMP, 5′-AMP and 3′-5′ ApA) in biomimicking prebiotic synthesis was developed using high-performance liquid chromatography (HPLC) with ultraviolet (UV) detection and electrospray ionization mass spectrometry (ESI-MS) identification. The separation was performed on a Supelco C18 column with a gradient elution (solvent A: 10 mM NH4Ac aqueous solution; solvent B: MeOH). The flow rate was set at 1.0 ml/min. The quantitative determination was achieved by HPLC with UV detection at 260 nm. The linearity ranged from 0.5 to 100 μg/ml for each nucleotide. The limits of detection (LODs) for the four nucleotides were less than 0.30 μg/ml. The recovery ranged from 95.2 to 100.7%. The intra-day relative standard deviations (RSDs) of the retention times were between 0.7 and 1.1%. Both full-scan ESI-MS and -MS2 for the four nucleotides under both positive and negative polarity were carried out and the possible cleavage pathways of them were depicted. The specific ions, [AMP + H]+ at m/z 348 and [ApA + H]+ at m/z 597, were chosen to characterize the four nucleotides in biomimicking prebiotic synthesis between N-(O,O-diisopropyl) phosphoryl amino acid (Dipp-aa) and adenosine. Using the proposed HPLC/UV/ESI-MS method, the concentration of 2′-AMP, 3′-AMP, 5′-AMP and 3′-5′ ApA in the biomimicking prebiotic synthesis samples were determined.  相似文献   

7.
A pair of pseudo-enantiomers, tertiary amine appended trans-4-hydroxyproline derivatives were designed, synthesized, and evaluated as chiral selectors for enantiomer analysis of DNB-amino acid and their amides, in single-stage electrospray ionization/mass spectrometric experiments. The chiral selectors were designed to remove the interaction of the hydroxyl group of trans-4-hydroxyproline as well as separate the ionization site from the sites required for effective chiral recognition. Addition of a chiral analyte to a solution containing two pseudo-enantiomeric chiral selectors, affords selector-analyte complexes in the electrospray ionization mass spectrum where the ratio of these complexes is dependent on the enantiomeric composition of the analyte. The relationship between the ratio of the selector-analyte complexes in the electrospray ionization mass spectrum and the enantiomeric composition of the analyte can be used to relate the extent of the measured enantioselectivity and for quantitative enantiomeric composition determinations. Effects of acid modifiers (ammonium chloride, acetic acid, formic acid and hydrochloric acid) and instrument conditions on the selector-analyte ion intensity and the enantioselectivity (αMS) were investigated. The largest αMS was observed using ammonium chloride at a concentration around 0.5-1 mM at desolvation temperature of 150 °C. Capillary voltage has little effects on αMS values. The sense of chiral recognition by MS is consistent with what is observed chromatographically. Quantitative enantiomeric composition determinations for N-(3,5-dinitrobenzoyl) leucinyl butylamide were performed. A comparison to the enantioselectivities towards a scope of analytes observed by chiral HPLC using a 3,5-dimethylanilide-proline-derived chiral stationary phase, is presented.  相似文献   

8.
Tohru Ikeya  Naho Horimoto 《Talanta》2009,79(3):818-823
A stable and highly sensitive HPLC method for uranine has been developed. Because of unstableness of silica-based octadecyl-C18 columns at high pH condition, a reversed phase HPLC analysis under alkaline conditions has not necessarily taken as a usual method. However, the application for uranine seems to be advantageous, since the fluorescence yield of uranine is markedly enhanced at high pH condition. The detection limit of the HPLC system was 0.9 pg. The analytical consideration was also paid for the solid phase extraction (SPE) prior to the HPLC analysis with careful consideration of the recently revised pKa values of uranine. The recovery rate of uranine by SPE was found to depend on the sample volume and a few ml of seawater was applied to SPE in order to maintain the recovery rate during SPE. A combination of HPLC and SPE methods achieved detection of uranine at concentrations as low as 0.2 ng l−1 (0.5 pM), which was comparable to the background concentration of uranine in coastal water off Japan. For the practical use of the detected tracer-uranine concentration values after substantial duration after release, the photodegradation of uranine in surface water was also evaluated in terms of incident solar radiation dose as an exponential rate constant of −0.135 mol photon−1 m2.  相似文献   

9.
Free radical copolymerizations of N-isopropyl acrylamide (NIPAM) and cationic N-(3-aminopropyl) methacrylamide hydrochloride (APMH) were investigated to prepare amine-functional temperature responsive copolymers. The reactivity ratios for NIPAM and APMH were evaluated in media of different ionic strength (rNIPAM = 0.7 and rAPMH = 0.7-1.2). Phase separation behavior of the random copolymers with only 5 mol% of the APMH was found to be suppressed in pure water at temperatures up to 45 °C due to electrostatic repulsion among the cationic amine groups randomly distributed along the copolymer chain. Alternate sequential addition of PNIPAM/APMH mixtures and pure NIPAM was used to provide increased control of the location of APMH units along the chain. Consequently (close to) homo-PNIPAM block(s) were formed as evidenced by its characteristic phase transition at 33 °C. The influences of the monomer feeding time and feeding interval time to the APMH distribution were investigated to prepare copolymers with thermo-induced phase separation under physiologically relevant temperature and to determine the extent of conjugation to poly(ethylene oxide).  相似文献   

10.
A simple, rapid and sensitive procedure using solid phase extraction and capillary zone electrophoresis for the determination of propranolol (a beta-blocker) and one of its metabolites, N-desisopropylpropranolol, has been developed and validated. The optimum separation of both analytes was obtained in a 37 cm × 75 μm fused silica capillary using 20 mmol/L phosphate buffer (pH 2.2) as electrolyte, at 25 kV and 30 °C, and hydrodynamic injection for 5 s. Prior to the electrophoretic separation, the samples were cleaned up and concentrated using a C18 cartridge and then, eluted with methanol, allowing a concentration factor of 30.Good results were obtained in terms of precision, accuracy and linearity. The limits of detection were 28 and 30 μg/L for N-desisopropylpropranolol and propranolol, respectively. Additionally, a robustness test of the method was carried out using the Plackett-Burman fractional factorial model with a matrix of 15 experiments.The presented method has been applied to the determination of both compounds in human urine.  相似文献   

11.
The temperature effects during the sol–gel process and ageing of the silica-based monolith on the structure and separation efficiency of the capillary columns (100 μm i.d., 150 mm) for HPLC separations were studied. The tested columns were synthesized from a mixture of tetramethoxysilane, polyethylene glycol and urea under the acidic conditions. The temperature was varied from 40 °C to 44 °C and formation of bypass channels between the silica mold and the capillary wall was examined. The temperature of 43 °C was estimated as optimal for preparation of efficient silica capillary columns which were subsequently modified by octadecyldimethyl-N,N-diethylaminosilane or covered by poly(octadecyl methacrylate) and tested using standard mixture of alkylbenzenes under the isocratic conditions.  相似文献   

12.
A new method for the measurement of N-nitrosamines in part-per-trillion concentrations from water samples without preconcentration steps has been developed. This method is based on online UV irradiation after high-performance liquid chromatographic separation and subsequent luminol chemiluminescence detection without addition of an oxidant. It was confirmed that N-nitrosamines in basic aqueous solution were transformed to peroxynitrite by UV irradiation. The detection limits for this method were 1.5 ng/L, 2.9 ng/L, 3.0 ng/L, and 2.7 ng/L for N-nitrosodimethylamine, N-nitrosomorpholine, N-nitrosomethylethylamine, and N-nitrosopyrrolidine, respectively, at a signal-to-noise ratio of 3. The calibration graphs were linear in the range of 5–1000 ng/L for these N-nitrosamines. This method was used for the determination of N-nitrosamines in tap water, river water, and industrial plant effluent samples. The recoveries of N-nitrosodimethylamine, N-nitrosomorpholine, N-nitrosomethylethylamine, and N-nitrosopyrrolidine present in tap water sample at a concentration of 10 ng/L (mean ± standard deviation, n = 4) were (94.8 ± 2.7)%, (102.0 ± 6.9)%, (99.3 ± 3.9)%, and (102.8 ± 2.5)%, respectively. These results indicate that our proposed method can be applied satisfactorily to the determination of N-nitrosamines in water samples.  相似文献   

13.
An ion chromatography method with non-suppressed conductivity detection was developed for the simultaneous determination of methylamines (methylamine, dimethylamine, trimethylamine) and trimethylamine-N-oxide in particulate matter air samples. The analytes were well separated by means of cation-exchange chromatography using a 3 mM nitric acid/3.5% acetonitrile (v/v) eluent solution and a Metrosep C 2 250 (250 mm × 4 mm i.d.) separation column. The effects of the different chromatographic parameters on the separation were also investigated. Detection limits of methylamine, dimethylamine, trimethylamine, and trimethylamine-N-oxide were 43, 46, 76 and 72 μg/L, respectively. The relative standard deviations of the retention times were between 0.42% and 1.14% while the recoveries were between 78.8% and 88.3%. The method is suitable for determining if methylamines and trimethylamine-N-oxide are a significant component of organic nitrogen aerosol in areas with high concentration of these species.  相似文献   

14.
In this study, a comparative investigation was performed of HPLC Ascentis® (2.7 μm particles) columns based on fused-core particle technology and Acquity® (1.7 μm particles) columns requiring UPLC instruments, in comparison with Chromolith™ RP-18e columns. The study was carried out on mother and vegetal tinctures of Passiflora incarnata L. on one single or two coupled columns. The fundamental attributions of the chromatographic profiles are evaluated using a chemometric procedure, based on the AutoCovariance Function (ACVF). Different chromatographic systems are compared in terms of their separation parameters, i.e., number of total chemical components (mtot), separation efficiency (σ), peak capacity (nc), overlap degree of peaks and peak purity. The obtained results show the improvements achieved by HPLC columns with narrow size particles in terms of total analysis time and chromatographic efficiency: comparable performance are achieved by Ascentis® (2.7 μm particle) column and Acquity® (1.7 μm particle) column requiring UPLC instruments. The ACVF plot is proposed as a simplified tool describing the chromatographic fingerprint to be used for evaluating and comparing chemical composition of plant extracts by using the parameters D% – relative abundance of the deterministic component – and cEACF – similarity index computed on ACVF.  相似文献   

15.
Four new cyclohexadepsipeptides, pullularins A-D, were isolated from the endophytic fungus Pullularia sp. BCC 8613. Structures of these compounds were elucidated by interpretation of NMR spectroscopic and mass spectrometric data. The absolute configurations of amino acid and hydroxy acid residues were determined by HPLC analysis of depsipeptide acid hydrolyzates using a chiral column and Marfey's method. Pullularin A exhibited activities against the malarial parasite Plasmodium falciparum K1 (IC50 3.6 μg/mL) and herpes simplex virus type 1 (HSV-1; IC50 3.3 μg/mL), whereas it showed weak cytotoxicity to Vero cells (IC50 36 μg/mL).  相似文献   

16.
Lewis acid catalyzed asymmetric halohydrin reactions—(halohydroxylation as well as halomethoxylation) of chiral α,β-unsaturated carboxylic acid derivatives were performed using N-halosuccinimide (NXS; X = Br, I) as the halogen source. Regio- and anti-selectivity of 100% and moderate to good diastereoselectivity with good yields were observed when Oppolzer’s sultam was used as the chiral auxiliary. Among the Lewis acids, Yb(OTf)3 was found to be the best catalyst. Alkenoyl and cinnamoyl substrates smoothly underwent bromohydrin reactions and the more electron-rich cinnamoyl substrates preferred to undergo iodohydrin reactions. However, electron-deficient cinnamoyl substrates did not respond to this Lewis acid catalyzed halohydrin reaction with NXS (X = Cl, Br, I).  相似文献   

17.
Kishida K  Furusawa N 《Talanta》2005,67(1):54-58
A simultaneous determination of sulfamonomethoxine, sulfadimethoxine, and their hydroxy/N4-acetyl metabolites in chicken plasma, muscle, liver, and eggs using gradient high-performance liquid chromatography (HPLC) with a photo-diode array detector is developed. All the compounds are extracted by a handheld ultrasonic homogenizer with ethanol followed by centrifugation. The separation is performed by a reversed-phase C4 column with a gradient elution (ethanol:1% (v/v) acetic acid, v/v; 10:90 → 20:80). Average recoveries from samples spiked at 0.1-1.0 μg g−1 or μg ml−1 for each drug were >90% with relative standard deviations within 4%. The limits of quantitation were <30 ng g−1 or ng ml−1.  相似文献   

18.
Xu X  Ye H  Wang W  Yu L  Chen G 《Talanta》2006,68(3):759-764
Four flavonoids (rutin, hyperoside, quercitrin and quercetin) in Houttuynia cordata Thunb. and Saururus chinensis (Lour.) Bail. were determined by capillary electrophoresis with wall-jet amperometric detection. The working electrode was a 500 μm diameter carbon disc electrode and the detection potential was +0.95 V (versus Ag/AgCl). Effects of several important factors, such as the running buffer and its corresponding pH and concentration, separation voltage, injection time were investigated to acquire the optimum conditions for separation of these four flavonoids. Baseline separation for the four flavonoids was obtained within 21 min in a 60 cm length capillary at a separation voltage of 15 kV with a 60 mmoL/L Na2B4O7-120 mmoL/L NaH2PO4 buffer (pH 8.8) as running buffer. The relationship between peak currents and analyte concentrations was linear over about two orders of magnitude with detection limits (defined as S/N = 3) ranging from 0.02 to 0.05 μg/mL for all analytes. This method was applied for the determination of the above four flavonoids in H. cordata Thunb. and S. chinensis (Lour.) Bail. with simple extraction procedures, and the assay results were satisfactory.  相似文献   

19.
A novel solid phase extraction technique for the speciation of trace dissolved Fe(II) and Fe(III) in environmental water samples was developed by coupling micro-column packed with N-benzoyl-N-phenylhydroxylamine (BPHA) loaded on microcrystalline naphthalene to electrothermal vaporization inductively coupled plasma-optical emission spectrometry (ETV-ICP-OES). Various influencing factors on the separation and preconcentration of Fe(II) and Fe(III), such as the acidity of the aqueous solution, sample flow rate and volume, have been investigated systematically, and the optimized operation conditions were established. At pH 3.0 Fe(III) could be selectively retained by micro-column (20 mm × 1.4 mm, i.d.) packed with BPHA immobilized on microcrystalline naphthalene, and Fe(II) passed through the micro-column. Both Fe(II) and Fe(III) could be adsorbed by the micro-column at pH 6.5. Thus, the total Fe could be determined without the need for preoxidation of Fe(II) to Fe(III). The retained Fe(III) or the Fe(II) and Fe(III) was subsequently eluted by 0.1 ml of 1 mol l−1 HCl. The adsorption capacity of the solid phase adsorption material was found to be 45.0 mg g−1 for Fe(III) at pH 3.0 and 65.3 mg g−1 for Fe(II) at pH 6.5, respectively. The detection limit (3σ) of 0.053 μg l−1 was obtained with a practical enrichment factor of 156 at a sample volume of 17 ml. The relative standard deviations of 4.2% and 4.6% (CFe(III) = CFe(II) = 10 μg l−1, n = 7) for Fe(III) and total iron were found, respectively. The method was successfully applied to the determination of trace Fe(II) and Fe(III) in environmental water samples (East Lake water, local tap water and mineral water). In order to validate the method, the developed method was applied to the determination of total iron in certified materials of NIES NO.10-b rice flour and GBW07605 tea leaves, and the results obtained were in good agreement with the certified values.  相似文献   

20.
High-performance liquid chromatography (HPLC) and fluorescence derivatization were applied for a nanogram-level N-nitrosodimethylamine (NDMA) analysis of water samples. For the analysis of N-nitrosodimethylamine, samples were first denitrosated by a mixed solution of hydrobromic acid and acetic acid to produce dimethylamine, which was derivatized with dansyl chloride for HPLC fluorescence detection. Fluorescence detection was optimized with excitation and emission wavelengths of 340 and 530 nm, respectively. pH adjustment after denitrosation was necessary to maximize fluorescence intensity with pHs in the range of 9-12. A dansyl chloride concentration of 500 mg l−1 was found to be optimal for measuring a fluorescence signal. An instrumental detection limit of 0.1 ng of NDMA was possible with fluorescence derivatization. The NDMA in water samples was extracted by continuous solid-phase extraction using Ambersorb 572. Although the determination of NDMA was variable at lower concentrations (less than 200 ng l−1), it was observed that the NDMA detection limit with this method could be lowered to a concentration of 10 ng l−1. Another benefit of this method can be found in its selectivity for NDMA. Unlike gas chromatographic (GC) methods, this method generates a distinct peak for NDMA without interference even in the complex matrix of wastewater effluents. The HPLC with fluorescence derivatization method may be applicable for determining NDMA in water and wastewater samples for various research purposes and for screening environmental samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号