首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this study various methods of sample preparation and matrices were investigated to determine optimum collection and analysis criteria for fungal analysis by matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS). Intact spores and/or hyphae of Aspergillus niger, Rhizopus oryzae, Trichoderma reesei and Phanerochaete chrysosporium were analyzed by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOFMS). The fungal samples were applied to the MALDI sample target as untreated, sonicated, or acid/heat treated samples, or blotted directly from the fungal culture with double-stick tape. Ferulic acid or sinapinic acid matrix solution was layered over the dried samples and analyzed by MALDI-MS. Statistical analysis showed that simply using double-stick tape to collect and transfer to a MALDI sample plate typically worked as well as the other preparation methods, and required the least sample handling.  相似文献   

2.
Porous silicon powder and silica gel particles have been applied as inorganic matrices for the analysis of small molecules in matrix-assisted laser desorption/ionization mass spectrometry (MALDI-TOFMS). In contrast to conventional MALDI-TOFMS, the signal interference of low-molecular analytes by the matrix has been eliminated. Almost no fragmentations of the analytes were observed. Effects of various factors, such as the particle and pore size, the suspending solution, and sample preparation procedures, on the intensity of mass spectra have been investigated. The pore structure of the inorganic matrix and penetration of the analytes into the pores must be optimized for effective desorption and ionization of the analytes. Matrices (DHB and HCCA) were covalently bound to silica gel for improvement of spectrum intensity. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

3.
Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOFMS) with nonpolar matrices has been investigated for its applicability to the characterization of atmospheric resid crude oil fractions. The data obtained by use of nonpolar matrices was compared with that from polar matrices as well as from direct LDI-MS and field ionization mass spectrometry. Nonpolar matrices, such as anthracene or 9-cyanoanthracene, yield only a single radical molecular cation upon LDI. Thus, no interfering matrix-related ions are present during the MALDI-TOFMS analysis of the crude oil sample. Nonpolar matrices yield molecular mass distributions from linear mode MALDI-TOFMS that are comparable to distributions found with LDI-MS. An advantage of nonpolar matrices is the increased production of analyte ions, which allows reflectron mode MALDI-TOFMS to be performed. Nonpolar matrices are also shown to be less sensitive to solvent and sample preparation conditions than conventional polar matrices. These results suggest that nonpolar matrices may be favorable alternatives to more traditional polar or acidic matrices commonly used in the MALDI mass spectral characterization of crude oil related samples.  相似文献   

4.
Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOFMS) was applied to the analysis of Ru(OCOCF(3))(2)(CO)(PPh(3))(2), Ru(OCOC(3)F(7))(2)(CO)(PPh(3))(2), Ir(tBuppy)(3) and Ir(ppy)(2)(acac) complexes. A troublesome problem in the MALDI-TOFMS characterization of these metal complexes is the possible replacement of complex ligands by matrix. In this contribution, 10 matrices, ranging from acidic to basic, were investigated: alpha-cyano-4-hydroxycinnamic acid (CHCA), 2,5-dihydroxybenzoic acid (DHB), sinapinic acid (SA), dithranol, 2,4,6-trihydroxyactophenone (THAP), 6-azo-2-thiothymine (ATT), norharman, 2-[(2E)-3-(4-tert-butylphenyl)-2-methylprop-2-enylidene]malononitrile (DCTB), 4-nitroaniline (NA) and 2-amino-5-nitrophyridine (ANP). With most of the matrices, including the neutral and basic ones, matrix substitution of ligand could clearly be detected. Based on the experimental results, possible mechanisms of matrix substitution were discussed. It was demonstrated that the ligand exchange process might also occur through the gas-phase reactions initiated by laser shots. Among the matrices tested, DCTB was found to be the best one for the complexes that are prone to ligand exchange by matrix.  相似文献   

5.
The application of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOFMS) to the direct detection and investigation of noncovalent solution-phase complexes is far from being routine and some principal problems and questions still exist. Therefore, this study systematically investigates several main problems, namely, the effect of sample preparation and some instrument-related parameters on the stability of the noncovalent complexes as well as the formation of nonspecific cluster ions in the case of the MALDI-MS analysis of specific peptide/peptide complexes. The complexes formed between biologically active fragments of human gastrin I, which contain the sequence motif EEEEE, and different peptides, which contain the interacting sequence motifs RR and RKR, were chosen as examples. A broad variety of MALDI matrices and sample preparation protocols were screened systematically and evaluated. The two 'less acidic' matrices 2,4,6-trihydroxyacetophenone and 6-aza-2-thiothymine, in combination with carefully selected solvents and additives, turned out to allow the reproducible detection of the solution-phase peptide/peptide complexes with good intensity, whereas the classical MALDI matrices could not be applied with the same success. Because both matrices also tend to induce the formation of nonspecific cluster ions, control experiments using nonbinding peptides were performed to definitely prove the specificity of the detected complexes. In contrast to the sensitivity of the peptide/peptide complexes to solution-phase conditions, the gas-phase stability during desorption/ionization was found to be extraordinary high. Neither the application of high laser fluence nor switching from continuous to delayed extraction mode as well as variation of the delay time up to 520 ns had considerable effect on the relative intensities of the specific peptide/peptide complexes.  相似文献   

6.
Since introduction of sinapinic acid (SA) and α‐cyano‐4‐hydroxycinnamic acid as matrices, successful application of matrix‐assisted laser desorption/ionization mass spectrometry started for protein/polypeptides. Both show some limitations in short peptide analysis because matrix clusters are quite abundant. Cinnamics currently used are E‐cinnamics. Here, Z‐SA as matrix for peptides is studied and compared with E‐SA and α‐cyano‐4‐hydroxycinnamic acid. Minor number of clusters is always observed in the low m/z region allowing the detection of short peptides. The results here described show that this novel matrix is a tool of choice for direct, rapid and sensitive detection of hydrophilic and hydrophobic peptides. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

7.
In spite of the growing acceptance of matrix‐assisted laser desorption/ionization time‐of‐flight mass spectrometry for the analysis of a wide variety of compounds, including polymers and proteins, its use in analyzing low‐molecular‐weight molecules (<1000m/z) is still limited. This is mainly due to the interference of matrix molecules in the low‐mass range. Here the derivatized fullerenes covalently bound to silica particles with different pore sizes are applied as thin layer for laser desorption/ionization (LDI) mass spectrometric analysis. Thus, an interference of intrinsic matrix ions can be eliminated or minimized in comparison with the state‐of‐the‐art weak organic acid matrices. The desorption/ionization ability of the developed fullerene–silica materials depends on the applied laser power, sample preparation and pore size of the silica particles. Thus, fullerene–silica serves as an LDI support for mass spectrometric analysis of molecules (<1500 Da). The performance of the fullerene–silica is demonstrated by the mass analysis of variety of small molecules such as carbohydrates, amino acids, peptides, phospholipids and drugs. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

8.
High-sensitivity, high-throughput analysis of proteins for proteomics studies is usually performed by polyacrylamide gel electrophoresis in combination with mass spectrometry. However, the quality of the data obtained depends on the in-gel digestion procedure employed. This work describes an improvement in the in-gel digestion efficiency for matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOFMS) analysis. A dramatic improvement in the coverage of tryptic peptides was observed when n-octyl glucoside was added to the buffer. Whole cell extracted proteins from S. cerevisiae were separated by two-dimensional gel electrophoresis and stained with silver. Protein spots were identified using our improved in-gel digestion method and MALDI-TOFMS. In addition, the mass spectra obtained by using the matrix alpha-cyano-4-hydroxycinnamic acid (CHCA) were compared with those obtained using 2,5-dihydroxybenzoic acid (DHB). The DHB matrix usually gave more peaks, which led to higher sequence coverage and, consequently, to higher confidence in protein identification. This improved in-gel digestion protocol is simple and useful for protein identification by MALDI-TOFMS.  相似文献   

9.
All eight cysteine residues in 92 kDa cabbage phospholipase D (PLD), deduced from the cDNA sequence, were shown to have free sulfhydryl groups by analysis using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOFMS) of tryptic peptides of PLD derivatized with p-chloromercurybenzoate, iodoacetic acid, and N-ethylmaleimide, as well as of underivatized PLD. Assignment of sulfhydryl groups by any one method was not conclusive. However, complementary information derived from tryptic peptides derivatized with different reagents made full assignment of sulfhydryl groups possible.  相似文献   

10.
Free 9-aminoacridine base is demonstrated to be a suitable matrix for negative mode matrix-assisted laser desorption/ionization time-of-flight mass spectrometric (MALDI-TOFMS) analysis of a wide range of low molecular weight organic acids including aliphatic (from acetic to palmitic acid), aromatic acids, phytohormones (e.g. jasmonic and salicylic acids), and amino acids. Low limits of quantitation in the femtomolar range (jasmonic - 250 fmol; caffeic - 160 fmol and salicylic - 12.5 fmol) and linear detector response over two concentration orders in the pico- and femtomolar range are extremely encouraging for the direct study of such acids in complex biological matrices.  相似文献   

11.
Identification of materials in color layers of paintings is necessary for correct decisions concerning restoration procedures as well as proving the authenticity of the painting. The proteins are usually important components of the painting layers. In this paper it has been demonstrated that matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOFMS) can be used for fast and reliable identification of proteins in color layers even in old, highly aged matrices. The digestion can be easily performed directly on silica wafers which are routinely used for infrared analysis. The amount of material necessary for such an analysis is extremely small. Peptide mass mapping using digestion with trypsin followed by MALDI-TOFMS and identification of the protein was successfully used for determination of the binder from a painting of the 19th century.  相似文献   

12.
The location of the disulfide bonds in a recombinant monoclonal antibody was confirmed by matrix-assisted laser desorption/ionization-time-of-flight (MALDI-TOF) and electrospray ionization (ESI) mass spectrometry (MS). A non-reduced Endoproteinase Lys-C (Endo Lys-C) digest of the antibody was analyzed directly by MALDI-TOFMS. The sample was then reduced on-plate by depositing dithiothreitol (DTT) on the sample spot and re-analyzed by MALDI-TOFMS. The disulfide bonds were assigned based on the disappearance of certain mass ions in the non-reduced digest and the appearance of product ions in the reduced digest. A rapid LC/ESI-MS protocol was also developed to determine the location of the disulfide bonds. The peptides generated from the Endo Lys-C digest of the antibody were partially separated on a high performance liquid chromatography (HPLC) column by utilizing a steep gradient and analyzed by ESI-MS. The masses of the partially resolved peptides were determined by deconvoluting the mass spectra.  相似文献   

13.
A surface‐assisted laser desorption/ionization time‐of‐flight mass spectrometric (SALDI‐TOF MS) method was developed for the analysis of small biomolecules by using functional single‐walled carbon nanohorns (SWNHs) as matrix. The functional SWNHs could transfer energy to the analyte under laser irradiation for accelerating its desorption and ionization, which led to low matrix effect, avoided fragmentation of the analyte, and provided high salt tolerance. Biomolecules including amino acids, peptides, and fatty acids could successfully be analyzed with about 3‐ and 5‐fold higher signals than those obtained using conventional matrix. By integrating the advantages of SWNHs and the recognition ability of aptamers, a selective approach was proposed for simultaneous capture, enrichment, ionization, and MS detection of adenosine triphosphate (ATP). This method showed a greatly improved detection limit (1.0 μM ) for the analysis of ATP in complex biological samples. This newly designed protocol not only opened a new application of SWNHs, but also offered a new technique for selective MS analysis of biomolecules based on aptamer recognition systems.  相似文献   

14.
Recently, a new multiple-layer matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOFMS) sample spotting technique for poly(ethylene glycol), offering improved analysis possibilities, was described. In this contribution the application of ink-jet printing to automated, multiple-layer MALDI-TOFMS sample preparation of synthetic polymers is presented, allowing accurate deposition of matrix, additive and analyte solutions. The new sample preparation technique was evaluated for poly(ethylene glycol) as well as poly(methyl methacrylate) standards, and optimized settings for both synthetic polymers have been obtained.  相似文献   

15.
The reagent 4-sulfophenyl isothiocyanate (SPITC) is an effective, stable, and inexpensive alternative to commercially available reagents used in the N-terminal sulfonation of peptides for enhanced postsource decay (PSD) in matrix-assisted laser desorption/ionization time-of-flight mass spectrometric (MALDI-TOFMS) analyses. However, suppression of ionization of sulfonated peptides due to sample and matrix contaminants such as sodium can be a problem when using prestructured MALDI target sample supports, such as the Bruker Daltonics AnchorChip. We show that use of the salt-tolerant matrix 2,4,6-trihydroxyacetophenone containing diammonium citrate (THAP/DAC) as an alternative to alpha-cyanohydroxycinnamic acid (HCCA) reduces the need for extensive washing of ZipTip-bound peptides or additional on-target sample clean-up steps. Use of the THAP/DAC matrix results in selective ionization of sulfonated peptides with greater peptide coverage, as well as detection of higher mass derivatized peptides, than was observed for HCCA or THAP alone. The THAP/DAC matrix is quite tolerant of sodium contamination, with SPITC-peptides detectable in preparations containing up to 50 mM NaCl. In addition, THAP/DAC matrix was found to promote efficient PSD fragmentation of sulfonated peptides. We demonstrated the utility of using the THAP/DAC MALDI matrix for peptide sequencing with DNA polymerase beta tryptic peptide mixture, as well as tryptic peptides derived from Xiphophorus maculatus brain extract proteins previously separated by two-dimensional polyacrylamide gel electrophoresis (2D-PAGE).  相似文献   

16.
We evaluated several aqueous-based sample preparation protocols for the analysis of poly(methacrylic acid) (PMAA) by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOFMS). The sample contained a pentaerythritol tetra(3-mercaptopropionate) end-group, and was characterized in positive and negative ion modes using 2,5-dihydroxybenzoic acid (DHB) and 2,4,6-trihydroxyacetophenone (THAP) matrices. The major series observed were the [M + Na](+) species, in positive ion mode, and the [M - H](-) species, in negative ion mode. The performance of DHB and THAP matrices was comparable in positive ion mode, but THAP outperformed DHB in negative ion mode. The use of ion-exchange beads (IXB) benefited the analysis, while the addition of sodium acetate (NaOAc) or trifluoroacetic acid (TFA) proved disadvantageous in positive ion mode.  相似文献   

17.
A new two-component system, consisting of a matrix and an onium salt as comatrix, is described for detection of sulfo-peptides in the positive mode by matrix-assisted desorption/ionization time-of-flight mass spectrometry (MALDI-TOFMS). Binary iodonium salts were superior to quaternary phosphonium salts in terms of suppression of desulfation and salt formation with the carboxyl group. Of the iodonium salts examined, bis(4-tert-butylphenyl)iodonium (BTI) hexafluorophosphate and bromide were most effective in giving intensive molecular ion signals in the form of [M(BTI)+BTI](+). The conditions optimized for O-sulfated tyrosine-containing peptides could be applicable for O-sulfated serine- and threonine-containing peptides. In the case of a phospho-peptide, a molecular ion appeared more intensively as a proton adduct than as a BTI adduct.  相似文献   

18.
Tyrosinase-induced oxidation of tyrosine is known to lead to melanin by cross-linking of 5,6-dihydroxyindole (DHI) and indole-5,6-quinone intermediates. However, tyrosinase-induced cross-linking of tyrosine-containing peptides has not been reported. We observed tyrosinase-induced adducts of tyrosine-containing peptides by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOFMS). MALDI-TOFMS was also used to observe tyrosine adducts at various levels of oxidation derived from acid hydrolysis of the peptide adducts. The rate of tyrosinase-induced browning of lys-tyr-lys was about half of that of tyrosine. These results indicate that tyrosinase-induced browning of tyrosine-containing peptides via direct oxidation and cross-linking of the benzene ring of the tyrosine residue occurs at a significant rate and needs to be considered in melanogenesis.  相似文献   

19.
The detection of water-soluble vitamins B(1), B(2), B(6), B(12) and C by matrix-assisted laser desorption/ionization (MALDI) time-of-flight mass spectrometry (TOFMS) was attempted by studying 17 porphyrin matrices. Comparative studies of porphyrin matrices, useful mass spectral window, matrix/analyte molar ratio (M/A), ultraviolet-visible absorption characteristics and quantitative results were made. Most porphyrin matrices provide a useful mass spectral window in the low-mass range. The optimal M/A increases with increasing molecular mass of the vitamin. Vitamin B(12) possesses the highest molecular mass and requires a higher M/A. The presence of hydroxyl or carboxyl groups in the porphyrin is an indicator of a useful MALDI matrix. Vitamins B(2) and B(6) were readily ionized upon irradiation with a 337 nm laser without the use of any porphyrin matrix. Improved linearity and sensitivity of the calibration curves were obtained with samples prepared with a constant M/A. The limits of detection and quantitation are at the picomole level. The results indicate that MALDI-TOFMS with porphyrin matrices is a rapid and viable technique for the detection of low molecular mass water-soluble vitamins.  相似文献   

20.
In this report, first use of size-selected gold nanoparticles (AuNPs) as matrixes for matrix assisted laser desorption/ionization (MALDI) is described for peptides and proteins. In comparison with conventional organic acid MALDI matrixes, the optimum matrix-to-analyte ratio with AuNP matrixes is reduced by 10-14 orders of magnitude. Significant differences in the relative abundances of the ions observed in positive and negative mode MALDI-time-of-flight mass spectrometry (TOFMS) are revealed as the AuNP size distribution is decreased from 10 to 2 nm, whereby 2-nm AuNPs exhibit quantum confinement effects prevalent in quantum dots. AuNP matrixes allow for selective analyte ionization, as demonstrated in the selective MALDI-TOFMS of phosphotyrosine in a background of phosphoserine and phosphothreonine peptides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号