首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 769 毫秒
1.
Optical dihydrogen phosphate-selective sensors that function on the basis of bulk optode principles and are based on two different uranyl salophene ionophores are reported here for the first time. The influence of the optode composition and measuring conditions such as sample pH on the optode response are characterized, along with sensor selectivity and long-term stability. Three plasticizers of different polarity are considered for optode fabrication: bis(2-ethylhexyl)sebacate (DOS), dodecyl 2-nitrophenyl ether (o-NPDDE), o-nitrophenyloctylether (o-NPOE). The compounds 9-(diethylamino)-5-(octadecanoylimino)-5H-benzo[a]phenoxazine (ETH 5294, chromoionophore I) and 9-(diethylamino)-5-[(2-octyldecyl)imino]benzo[a]phenoxazine (ETH 5350, chromoionophore III) are used as H+-selective fluoroionophores that also act as reference ionophores. The resulting optode-based sensors are compared with their ion-selective electrode (ISE) counterparts, and it is revealed that optodes are better suited for operation at physiological pH. The best optode performance was found for the two component optode sensors doped with ETH 5350 and phosphate ionophore(I). The linear range of these sensor was log a = −6.0 to −2.6. Dihydrogen phosphate-selective optode sensors of optimized composition are fabricated in microsphere format and preliminary measurements in diluted sheep blood samples are presented.  相似文献   

2.
3.
In this article we describe a new class of high-density optical microarrays based on molecularly imprinted microsphere sensors that directly incorporate specific recognition capabilities to detect enrofloxacin (ENRO), an antibiotic widely used for both human and veterinary applications. This approach involves the preparation of highly cross-linked polymer microspheres by thermal precipitation–polymerization in the presence and absence of the target analyte ENRO to generate either molecularly imprinted (MIP) or non-imprinted polymer (NIP) microspheres, respectively. Each polymer type of tailor-made microsphere is fluorescently encoded with either coumarin-30 or tris(4,7-diphenyl-1,10-phenanthroline)ruthenium(ii) dichloride [Ru(dip)3]Cl2 to enable the microspheres to be distinguished. The new MIP-based sensing platform utilizes an optical fiber bundle containing approximately 50 000 individual 3.1 μm diameter fibers that are chemically etched to create microwells in which MIP and NIP microspheres can be deposited and imaged using an epi-fluorescence microscope. The method enables multiplexed detection by independently addressing both types of beads through their separate light channels. The unique response to the presence of ENRO is manifested on the basis of a competitive immunoassay. A red-fluorescent dye-tagged ENRO, labeled with BODIPY® TR Cadaverine, competes with ENRO for specific binding sites. The developed immuno-like assay displayed a limit of detection (LOD) of 0.04 μM (10% binding inhibition) and a dynamic range of 0.29–21.54 μM (20–80% binding inhibition). The selectivity of the assay was evaluated by measuring the cross-reactivity of other fluoroquinolones (ciprofloxacin, norfloxacin, danofloxacin, and flumequine) and non-related antibiotics (penicillin G and doxycycline). This work demonstrates, for the first time, the applicability of MIPs, as an alternative to biomolecule receptors, for the development of multiplexed detection fiber-optic microarrays paving the way for a new generation of biomimetic sensors.  相似文献   

4.
We present a methodology for fabricating polymer microspheres using inkjet printing of a biodegradable polymer containing either high explosives or high explosive simulant. Poly(dl-lactide/glycolide) 85:15 (PLGA) microsphere production is based on an oil/water emulsion solvent extraction process. The inkjet printing process allows for precise control of the microsphere diameter and the chemical composition. The microspheres can be used as calibrants or verification standards for explosives trace detection instruments. Gas chromatography/mass spectrometry analysis demonstrated that the composition of the microspheres was consistent with predicted concentrations based on the amount of analyte incorporated into the polymer solution and the inkjet operating parameters. We have demonstrated that the microspheres can be fabricated with a mass fraction of 70% of an analyte compound.  相似文献   

5.
In this article, analytical and experimental studies are carried out to investigate the dynamical behavior of polymer microspheres that are doped with magnetic polarizable microparticles. The effect of a static and harmonic inductive magnetic field on the elastic deformation of the microsphere is investigated. The elastic deformation that is induced by the magnetic forces (magnetostrictive effect) acting on the microsphere is measured using an optical technique that is based on the whispering gallery mode (WGM) of the microsphere. The WGMs experience a shift when the morphology of the resonator is perturbed by the elastic deformation. Therefore, the elastic deformation of the microsphere is measured by monitoring the shift of the optical resonances. For these studies, the microsphere has a radius of ∼600 µm and is fabricated by mixing polyvinyl chloride (PVC) with magnetic polarizable microparticles. The microsphere is further coated with a thin layer of pure PVC that serves as a wave‐guide for the optical modes. Experiments are carried out to validate the analysis. Measurements are taken up to a frequency of 200 Hz, showing that the microspheres can be used as magnetic field sensors or as element for the fabrication of smart structures. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2018 , 56, 598–603  相似文献   

6.
We have developed a sensitive, specific, rapid and low cost picoliter microsphere-based platform for bioanalyte detection and quantification. In this method, a biological sample, biosensing microspheres, and fluorescently labeled detection (secondary) antibodies are co-encapsulated to capture the analyte (here: human anti-tetanus immunoglobulin G) on the surface of the microsphere in microfluidic pL-sized droplets. The absorption of the analyte and detecting antibodies on the microsphere concentrate the fluorescent signal in correlation with analyte concentration. Using our platform and commercially available antibodies, we were able to quantify anti-tetanus antibodies in human serum. In comparison to standard bulk immunosorbent assays, the microfluidic droplet platform presented here reduces the reagent volume by four orders of magnitude, while fast reagent mixing reduces the detection time from hours to minutes. We consider this platform to be a major leap forward in the miniaturization of immunosorbent assays and to provide a rapid and low cost tool for global point-of-care.
Figure
We have developed a sensitive, specific, rapid and low cost pico-liter microsphere based platform for detection and quantification of human anti-tetanus immunoglobulin G. In this method, a biological sample, biosensing microspheres, and fluorescently labeled detection antibodies are co-encapsulated to capture the analyte on the surface of the microsphere in microfluidic pL-sized droplets. Using our platform and commercially available antibodies, we quantified the anti-tetanus antibodies content in human serum.  相似文献   

7.
In this paper,zinc acetate,manganese acetate and thiacetamide are used as raw materials to successfully synthesize monodispersed ZnS:Mn2+ microspheres by using hydrothermal method and taking P123 surfactant as a template. The products were characterized by XRD,STEM,FT-IR and N2 adsorption-desorption. And the results show that the diameter of this microsphere is 1.0 μm or so,which is larger than that of ZnS microsphere without Mn2+ doping,and it has monodispersion,smooth surface and uniform size. The doping of Mn2+ does not obviously change the structure of monodispersed ZnS microsphere. The photoluminescence peak lies in a wide band ranging from 450 to 650 nm,and the microspheres emit orange light; with the increase of Mn2+ concentration,fluorescence intensity of ZnS:Mn2+ microsphere changes,and when the mole ratio of Mn2+:Zn2+ is 0.3:1,the fluorescence intensity is the strongest.  相似文献   

8.
The temporal evolution of the Si atomic emission signal produced from individual silica microspheres in an aerosolized air stream was investigated using laser-induced breakdown spectroscopy (LIBS). Specifically, the temporal evolution of Si emission from 2.47 and 4.09-micrometer-sized particles is evaluated over discrete delay times ranging from 15 to 70 µs following plasma initiation. The analyte signal profile from the microspheres, taken as the silicon atomic emission peak-to-continuum ratio, was observed to follow the same profile of silicon-rich nanoparticles over the range of delay times. The ratio of analyte signals for the 2.47 and 4.09-micrometer particles was observed to be approximately constant with plasma decay time and less than the expected mass ratio, leading to the conclusion that further vaporization and enhanced analyte response do not continue with increasing delay times for these microsphere sizes. While recent research suggests that the temporal component of analyte response is important for quantitative LIBS analysis, the current study does confirm earlier research demonstrating an upper size limit for quantitative aerosol particle analysis in the diameter range of 2 to 2.5 µm for silica microspheres.  相似文献   

9.
Plasticizer-free methyl methacrylate-decyl methacrylate (MMA-DMA) microspheres were prepared under mild, non-reactive conditions using a high-throughput particle generator. The particles were perfectly smooth and monodisperse, with a particle diameter of approximately 10.0 μm. In order to evaluate the suitability of the polymer as a matrix for bulk extraction processes, lipophilic sensing components were incorporated into the particles. Particles contained either a H+-selective chromoionophore (ETH 5294) only (type 1), or a K+-selective ionophore (BME-44), anionic sites (NaTFPB), and ETH 5294 (type 2). Type 1 particles responded according to an anion–proton coextraction mechanism and demonstrated Hofmeister selectivity by showing a preference for more lipophilic sample anions (ClO4>NO3>Cl). Particles of type 2 functioned by way of an ion-exchange equilibrium and demonstrated a functional response for K+, with a dynamic range from 10−1–10−4 M K+. These particles also exhibited selectivity comparable to that previously reported for analogous particles made from bis(2-ethylhexyl sebacate) (DOS)-plasticized poly(vinyl chloride) (PVC) and DMA-DOS. In addition, the behavior of both types1 and 2 particles was in agreement with analogous thin film optical sensors (optodes) prepared from MMA-DMA. With the advent of ionophore-based plasticizer-free microspheres a wide variety of ions may potentially be assessed using various popular bead-based sensing strategies, such as lab-on-a-chip technologies, bundled optical fiber arrays, and flow cytometry, without experiencing the deleterious effects resultant of plasticizer leaching.  相似文献   

10.
ABSTRACT

This letter reports the optical pumped lasing behaviours of a three-layer Bragg resonance cavity consisting of dye-doped cholesteric liquid crystal (DDCLC) microdroplet, polyglycerol-2 and hollow glass microsphere. The function of PG2 is to control the parallel anchoring of the liquid crystal (LC) molecules on the surface of the LC microdroplet. The whispering-gallery mode (WGM), radial Bragg (photonic bandgap, PBG) mode and Bragg WGM (BWGM) are observed in DDCLC microspheres with different helical pitches and LC refractive indices. The formation mechanisms of six types of lasing emission conditions are analysed in detail. The study results present the prospect of controlling the output mode of the laser. Furthermore, such solid shell-based DDCLC microspheres have outstanding potential applications in miniaturised 3D Bragg lasers, sensors, and integrated and tunable optical devices.  相似文献   

11.
In this work, the possibility of application of free base porphyrin as a lipophilic pH chromoionophore for the preparation of optical cation-selective sensors was investigated. The properties of polymeric membranes, containing porphyrins of different structures, namely tetraphenylporphyrin (TPP) and octaethylporphyrin (OEP), were compared. Changes in equilibrium between protonated and deprotonated form of porphyrin, resulting from variations in ACh concentration, were evaluated. The influence of various factors (kind and quantity of anionic additive and porphyrin in the membrane phase, pH of sample solution) on initial equilibrium was studied. The best membrane composition was chosen as: TPP 3 wt.%, KTFPB 175 mol.% relative to ionophore, PVC:o-NPOE (1 : 4) and measuring buffer solution: 0.05 M MES, pH 4.5. Selectivity, response stability, reversibility and repeatability tests were carried out for chosen sensor. Developed sensor allowed for the determination of a model analyte, acetylcholine, at the concentration range of 10(-5) to 10(-2) M, both in stationary and flow-injection system. Sensor response was reversible and repeatable in the mentioned concentration range.  相似文献   

12.
Biodegradable hollow microspheres were prepared by double oil and water emulsion using a lipophilic surfactant, Labrafil M 1944 CS. Olive oil was emulsified in biodegradable polymer-dissolved dichloromethane mixed with Labrafil by vigorous sonication. This oil-in-oil emulsion was directly re-emulsified in 0.1% poly(vinyl alcohol) solution, subsequently solidified by evaporating dichloromethane. Olive oil and Labrafil were extracted from the microspheres by using hexane. After vigorous washing with n-hexane, the hollow microsphere was freeze-dried and examined under scanning electron microscopy, confirming the morphology of hollow microspheres with thin walls and huge blank cores inside. The concentration of poly(l-lactide) in dichloromethane affected the size of hollow microspheres while the volume of olive oil or dichloromethane did not. This hollow microsphere is expected to be employed as an imaging contrast agent and a novel drug delivery vehicle.  相似文献   

13.
由大分子单体法合成了表面聚N-乙烯基乙酰胺接枝聚苯乙烯(PNVA-g-PSt)微球,通过对该接枝链进行化学改性得到了新型功能化高分子微球.用透射电子显微镜、激光光散射和X射线光电子能谱对高分子微球的形态、表面组成和直径大小进行了表征,发现微球经水解后形态更加规整,在分散状态下直径有所增加且保持核-壳型结构.实验比较了几种高分子微球对Cu2 ,Pb2 离子的吸附效果.定量测定结果表明:高分子微球经功能化处理后,其吸附效果有了很大的改进,在较低浓度范围,Pb2 离子的脱除率可达100%.  相似文献   

14.
The FDA (U.S. Food and Drug Administration) has approved only a negligible number of poly(lactide-co-glycolide) (PLGA)-based microsphere formulations, indicating the difficulty in developing a PLGA microsphere. A thorough understanding of microsphere formulations is essential to meet the challenge of developing innovative or generic microspheres. In this study, the key factors, especially the key process factors of the marketed PLGA microspheres, were revealed for the first time via a reverse engineering study on Vivitrol® and verified by the development of a generic naltrexone-loaded microsphere (GNM). Qualitative and quantitative similarity with Vivitrol®, in terms of inactive ingredients, was accomplished by the determination of PLGA. Physicochemical characterization of Vivitrol® helped to identify the critical process parameters in each manufacturing step. After being prepared according to the process parameters revealed by reverse engineering, the GNM demonstrated similarity to Vivitrol® in terms of quality attributes and in vitro release (f2 = 65.3). The research on the development of bioequivalent microspheres based on the similar technology of Vivitrol® will benefit the development of other generic or innovative microspheres.  相似文献   

15.
The salt resistance, temperature resistance, and shear stability of a cross-linked polyacrylamide microsphere system are studied by microfiltration, light diffraction analysis, and optical microscopy. The results show that other conditions being equal, the particle diameter of cross-linked polyacrylamide microspheres decreases with increased NaCl concentration. When NaCl concentration is lower than 10,000 mg/L, its effect on the plugging performance of a cross-linked polyacrylamide microsphere system in regard to the nuclear pore membrane is weak in comparison with a linked polymer solution, but the former system has better salt tolerance. Particle diameter decreases with increased swelling temperature. When the swelling temperature is below 90°C, its effect on the plugging performance of the cross-linked polyacrylamide microsphere system in regard to nuclear pore membrane is weak in comparison with the linked polymer solution, but has better temperature tolerance. Particle size shows little change, with shearing rate being increased, while the shape remains about the same and the effect of shearing on the plugging performance of the cross-linked polyacrylamide microsphere dispersion system in regard to the nuclear pore membrane is weak in comparison with the linked polymer solution, but has better shear stability. The salt tolerance, temperature tolerance, and shear stability of microspheres are associated with a particular cross-linked structure.  相似文献   

16.
Implant-associated fibrotic capsule formation presents a major challenge for the development of long-term drug release microspheres and implantable sensors. Since material properties have been shown to affect in vitro cellular responses and also to influence short-term in vivo tissue responses, we have thus assumed that the type and density of surface chemical groups would affect the degree of tissue responses to microsphere implants. To test this hypothesis, polypropylene particles with different surface densities of -OH and -COOH groups, along with the polypropylene control (-CH2 groups) were utilized. The influence of functional groups and their surface densities on fibrotic reactions were analyzed using a mice subcutaneous implantation model. Our comparative studies included determination and correlation of the extents of fibrotic capsule formation, cell infiltration into the particles, and recruitment of CD11b+ inflammatory cells for all of the substrates employed. We have observed major differences among microspheres coated with different surface functionalities. Surfaces with -OH surface groups trigger the strongest responses, while -COOH-rich surfaces prompt the least tissue reactions. However, variation of the surface density of either functional group has a relatively minor influence on the extent of fibrotic tissue reactions. The present results show that surface functionality can be used as a powerful tool to alter implant-associated fibrotic reactions and, potentially, to improve the efficacy and function of drug-delivery microspheres, implantable sensors, and tissue-engineering scaffolds.  相似文献   

17.
Molecularly imprinted polymer (MIP) microspheres were synthesized through precipitation polymerization using malachite green (MG) as template, methacrylic acid (MAA) as monomer, and trimethylolpropane trimethacrylate (TRIM) as cross-linker. The microsphere structure of MIP was characterized by IR spectroscopy and SEM. The influence of preparation conditions such as monomer and cross-linker dosages on the polymer absorption of MG in acetonitrile solution was also explored. Under the optimum synthesis conditions (0.25 mmol MG, 1.5 mmol MAA, 2.5 mmol TRIM, 40 mL acetonitrile), the prepared MIP microspheres have a binding capacity as high as 2000 µg g?1 of MG with an imprinting factor of above 4.0. The result suggests that the prepared MIP microspheres are promising material for the selective extraction of MG in complicated matrix solutions.  相似文献   

18.
In this report, our main focus is to introduce a set of one-dimensional (1D) NMR methods based on chemical shift, relaxation, and magnetization transfer, namely, NOE and chemical exchange involving selective pulse excitation to study the solution dynamics of drug in free and encapsulated state within polymeric microsphere. In this regard 5-fluorouracil (5-FU) loaded poly lactic-co-glycolic acid (PLGA) microspheres are prepared as model system via standard water-in-oil-in-water emulsification method. One-dimensional 1H and 19F nuclear magnetic resonance (NMR) spectra of 5-FU in presence of PLGA microspheres presented a significant change in linewidth and relaxation rates compared with free 5-FU confirming encapsulation. Furthermore, loss of coupling pattern in 1H and 19F NMR of PLGA encapsulated 5-FU as compared with free 5-FU suggests an enhanced –NH and –H2O protons exchange dynamics in the interior of the microsphere indicating hydrated microsphere cavity. Quantification of exchange dynamics in case of free and PLGA-encapsulated 5-FU was attempted employing 1D selective NOESY and 1D multiply selective inversion recovery experiments. Analysis of the exchange rates confirmed existence of more than one kind of water population within the cavity as mentioned in an earlier solid state NMR report.  相似文献   

19.
The results of an investigation of heat transfer in a new type of insulation (microsphere insulation) are presented. The effects of the microsphere diameter, the concentration of metallized microspheres and the residual gas pressure on the thermal conductivity of the insulation were investigated. Measurements were made of the thermal conductivity at 77 to 300 K of microspheres with differing diameters (e.g. 95, 130 and 270 μm) and of samples with silver metallized microsphere concentrations of 7 and 32%. Measurements of average thermal conductivity (77–296 K) were made at residual gas pressuresk(p) in the range from 10?3 Pa to 105 Pa for pure nitrogen. The component of heat transfer by gas,k gc (p), was estimated.  相似文献   

20.
Cuprous oxide microsphere material was fabricated by electrochemical deposition using polystyrene particles as template. The samples are characterized by scanning electron microscope (SEM), X-ray diffraction, and UV–vis spectrophotometer. The SEM image shows the morphology and size of the microspheres, and the thickness of covered Cu2O layer is about 100 nm. Due to the unique microspherical structure, the surface area is larger, and the optical absorption is better in Cu2O microsphere material than in bulk Cu2O film, which makes the degradation of methylene blue faster and photoelectrocatalytic oxidation of glucose stronger on Cu2O microsphere material than on bulk Cu2O film under visible light illumination. The enhanced photo- and photoelectro-catalytic activity makes the Cu2O microsphere material more suitable for solar applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号