首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Zhu L  Chen Y  Wu Y  Li X  Tang H 《Analytica chimica acta》2006,571(2):242-247
A new method for chemical oxygen demand (COD) determination has been developed, based on photocatalytic oxidative degradation by using a fluorinated-TiO2-KMnO4 system. In such a system, a linear correlation is observed between the amount of oxidizable dissolved organic matter and the amount of MnO4 consumed by the coupled reduction process. Thus, the COD determination is transformed to a simple and direct determination of the deletion of MnO4. The surface fluorination of TiO2 nanoparticles can enhance the rate of photocatalytic oxidation of organic matter and the rate of coupled photocatalytic reduction of MnO4. This makes the method be rapid, environment friendly and easy for operation. Under optimized conditions, this method can respond linearly to COD of potassium hydrogen phthalate (KHP) in the range of 0.1-280 mg L−1, with a detection limit of 0.02 mg L−1 COD. The COD in samples of tap water, lake water and paper industry sewage has been determined satisfactorily by using this method.  相似文献   

2.
A flow injection (FI) method with flame atomic absorption spectrometry (FAAS) detection was developed for the determination and speciation of nitrite and nitrate in foodstuffs and wastewaters. The method is based on the oxidation of nitrite to nitrate using a manganese(IV) dioxide oxidant microcolumn where the flow of the sample through the microcolumn reduces the MnO2 solid phase reagent to Mn(II), which is measured by FAAS. The absorbance of Mn(II) are proportional to the concentration of nitrite in the samples. The injected sample volume was 400 μL with a sampling rate of analyses was 90 h−1 with a relative standard deviation better than 1.0% in a repeatability study. Nitrate is reduced to nitrite in proposed FI-FAAS system using a copperized cadmium microcolumn and analyzed as nitrite. The calibration curves were linear up to 20 mg L−1 and 30 mg L−1 with a detection limit of 0.07 mg L−1 and 0.14 mg L−1 for nitrite and nitrate, respectively. The results exhibit no interference from the presence of large amounts of ions. The method was successfully applied to the speciation of nitrite and nitrate in spiked natural water, wastewater and foodstuff samples. The precision and accuracy of the proposed method were comparable to those of the reference spectrophotometric method.  相似文献   

3.
Melchert WR  Rocha FR 《Talanta》2005,65(2):461-465
Nitrate determination in waters is generally carried out with cadmium filings and carcinogenic reagents or by reaction with phenolic compounds in highly concentrated sulfuric acid medium. In this work, it was developed a green analytical procedure for nitrate determination in natural waters based on direct spectrophotometric measurements in ultraviolet, using a flow-injection system with an anion-exchange column for separation of nitrate from interfering species. The proposed method employs only one reagent (HClO4) in a minimum amount (equivalent to 18 μL concentrated acid per determination), and allowed nitrate determination within 0.50-25.0 mg L−1, without interference of up to 200.0 mg L−1 humic acid; 1.0 mg L−1 NO2; 200.0 mg L−1 PO43−; 75.0 mg L−1 Cl; 50.0 mg L−1 SO42− and 15.0 mg L−1 Fe3+. The detection limit (99.7% confidence level) and the coefficient of variation (n = 20) were estimated as 0.1 mg L−1 and 0.7%, respectively. The results obtained for natural water samples were in agreement with those achieved by the reference method based on nitrate reduction with copperized cadmium at the 95% confidence level.  相似文献   

4.
In the present paper, the TiO2 nanorod arrays electrode was developed as a sensor for the determination of chemical oxygen demand (COD) based on a photoelectrochemical degradation principle. Effects of common parameters, such as applied potential, light intensity and pH on its analytical performance were investigated. Under the optimized conditions, the nanorod arrays electrode was successfully applied in the COD determination for both synthetic and real samples. In the COD determination, the proposed method can achieve a practical detection limit of 18.3 mg L−1 and a linear range of 20–280 mg L−1. Furthermore, the results obtained by the proposed method were well correlated with those obtained using the conventional (i.e., dichromate) COD determination method. The main advantages of this COD determination method were its simplicity, long term stability and environmental friendly (corrosive and toxic reagents not consumed). This work would open a new application area (COD determination) of the TiO2 nanorod arrays.  相似文献   

5.
A multi-pumping flow system (MPFS) for the spectrophotometric determination of dissolved orthophosphate and dissolved organic phosphorus in wastewater samples is proposed. The determination of orthophosphate is based on the vanadomolybdate method. In-line ultraviolet photo-oxidation is employed to mineralise organic phosphorus to orthophosphate prior to detection. A solenoid valve allows the deviation of the flow towards the UV-lamp to carry out the determination of organic phosphorus.Calibration was found to be linear up to 20 mg P L−1, with a detection limit (3sb/S) of 0.08 mg P L−1, an injection throughput of 75 injections h−1 and a repeatability (R.S.D.) of 0.6% for the direct determination of orthophosphate. On the other hand, calibration graphs were linear up to 40 mg P L−1, with a detection limit (3sb/S) of 0.5 mg P L−1, an injection throughput of 11 injections h−1 and a repeatability (R.S.D.) inferior to 2.3% for the procedures involving UV photo-oxidation.  相似文献   

6.
Li J  Li L  Zheng L  Xian Y  Jin L 《Talanta》2006,68(3):765-770
A COD measurement by a photocatalytic oxidation method using nano-TiO2 film was investigated. K2Cr2O7 was added into the solution to enhance the efficiency of photocatalytic degradation, and simultaneously K2Cr2O7 was reduced to Cr(III) by photogenerated electrons, which were adsorbed on the surface of TiO2. The measuring principle was based on direct determination of Cr(III) concentration which was proportional to the COD value. Under the optimized experiment condition, the application range was 20-500 mg l−1, and the detection limit was 20 mg l−1. The immobilization of photocatalyst on the supports could not only solve the problem of low recovery of the catalyst and hard separation from the solution, but also overcome its shortcoming of poor stability. Applied this method to the determination of real samples, it was found to be rapid and environmentally friendly. Additionally, the method proposed above for determination of COD was in excellent correspondence with values obtained by using the conventional method.  相似文献   

7.
This work reports on the development of a graphite-polystyrene composite electrode of planar configuration, containing silver(II) oxide and copper(II) oxide catalysts (AgO-CuO), for the measurement of electrochemical oxygen demand (EOD). Optimisation studies of the composite composition as well as conditions for its processing on planar substrates and generation of an appropriate electrochemical active area resulted in the scalable fabrication of robust composite electrodes. These were evaluated with glucose as target analyte. They showed competitive low limits of detection in a linear concentration range from 5 mg L−1 to 1400 mg L−1 of O2. Besides, they were stable for at least one year. The determination of EOD in wastewater samples coming from production lines of parenteral food and winemaking was successfully carried out.  相似文献   

8.
A highly selective and simple flow injection method is reported for the determination of Au(III) in jewel samples. The method is based on the catalytic effect of Au(III) on the oxidation of 4-amino-4′-methoxydiphenylamine hydrochloride (Variamine Blue B base, VB) by KIO3. The colored reaction product was monitored spectrophotometrically at 546 nm. A volume fraction of 40% N,N-dimethylformamide (DMF) greatly enhances the selectivity of the method. The chemical (pH and concentrations of reagents) and instrumental variables (sample injection volume, reagents flow rates, reaction coil length) affecting the determination were studied and optimized. Under the selected values, the analyte could be determined in the range of 0.1-12.0 mg L−1 (r = 0.9997), at a sampling rate of 120 h−1. The proposed assay was precise (sr = 0.8% at 5.0 mg L−1 Au(III), n = 12) and adequately sensitive with a 3σ limit of detection of 0.03 mg L−1. The method was successfully applied to the analysis of jewel samples. The obtained results were favorably compared to flame atomic absorption spectrometry (FAAS) used as a reference method.  相似文献   

9.
A sequential injection method (SIA) for carbon speciation in inland bathing waters was developed comprising, in a single manifold, the determination of dissolved inorganic carbon (DIC), free dissolved carbon dioxide (CO2), total carbon (TC), dissolved organic carbon and alkalinity. The determination of DIC, CO2 and TC was based on colour change of bromothymol blue (660 nm) after CO2 diffusion through a hydrophobic membrane placed in a gas diffusion unit (GDU). For the DIC determination, an in-line acidification prior to the GDU was performed and, for the TC determination, an in-line UV photo-oxidation of the sample prior to GDU ensured the conversion of all carbon forms into CO2. Dissolved organic carbon (DOC) was determined by subtracting the obtained DIC value from the TC obtained value. The determination of alkalinity was based on the spectrophotometric measurement of bromocresol green colour change (611 nm) after reaction with acetic acid. The developed SIA method enabled the determination of DIC (0.24–3.5 mg C L−1), CO2 (1.0–10 mg C L−1), TC (0.50–4.0 mg C L−1) and alkalinity (1.2–4.7 mg C L−1 and 4.7–19 mg C L−1) with limits of detection of: 9.5 μg C L−1, 20 μg C L−1, 0.21 mg C L−1, 0.32 mg C L−1, respectively. The SIA system was effectively applied to inland bathing waters and the results showed good agreement with reference procedures.  相似文献   

10.
The usefulness of the secondary line at 252.744 nm and the approach of side pixel registration were evaluated for the development of a method for sequential multi-element determination of Cu, Fe, Mn and Zn in soil extracts by high-resolution continuum source flame atomic absorption spectrometry (HR-CS FAAS). The influence of side pixel registration on the sensitivity and linearity was investigated by measuring at wings (248.325, 248.323, 248.321, 248.329, and 248.332 nm) of the main line for Fe at 248.327 nm. For the secondary line at 252.744 nm or side pixel registration at 248.325 nm, main lines for Cu (324.754 nm), Mn (279.482 nm) and Zn (213.875 nm), sample flow-rate of 5.0 mL min−1 and calibration by matrix matching, analytical curves in the 0.2-1.0 mg L−1 Cu, 1.0-20.0 mg L−1 Fe, 0.2-2.0 mg L−1 Mn, 0.1-1.0 mg L−1 Zn ranges were obtained with linear correlations better than 0.998. The proposed method was applied to seven soil samples and two soil reference materials (IAC 277; IAC 280). Results were in agreement at a 95% confidence level (paired t-test) with reference values. Recoveries of analytes added to soil extracts containing 0.15 and 0.30 mg L−1 Cu, 7.0 and 14 mg L−1 Fe, 0.60 and 1.20 mg L−1 Mn, 0.07 and 0.15 mg L−1 Zn, varied within the 94-99, 92-98, 93-101, and 93-103% intervals, respectively. The relative standard deviations (n = 12) were 2.7% (Cu), 1.4% (Fe - 252.744 nm), 5.7% (Fe - 248.325 nm), 3.2% (Mn) and 2.8% (Zn) for an extract containing 0.35 mg L−1 Cu, 14 mg L−1 Fe, 1.1 mg L−1 Mn and 0.12 mg L−1 Zn. Detection limits were 5.4 μg L−1 Cu, 55 μg L−1 Fe (252.744 nm), 147 μg L−1 Fe (248.325 nm), 3.0 μg L−1 Mn and 4.2 μg L−1 Zn.  相似文献   

11.
Silva SG  Rocha FR 《Talanta》2010,83(2):559-564
A flow system designed with solenoid micro-pumps is proposed for fast and greener spectrophotometric determination of free glycerol in biodiesel. Glycerol was extracted from samples without using organic solvents. The determination involves glycerol oxidation by periodate, yielding formaldehyde followed by formation of the colored (3,5-diacetil-1,4-dihidrolutidine) product upon reaction with acetylacetone. The coefficient of variation, sampling rate and detection limit were estimated as 1.5% (20.0 mg L−1 glycerol, n = 10), 34 h−1, and 1.0 mg L−1 (99.7% confidence level), respectively. A linear response was observed from 5 to 50 mg L−1, with reagent consumption estimated as 345 μg of KIO4 and 15 mg of acetylacetone per determination. The procedure was successfully applied to the analysis of biodiesel samples and the results agreed with the batch reference method at the 95% confidence level.  相似文献   

12.
An ion mobility spectrometer equipped with an ultraviolet lamp was used for the qualitative and quantitative determination of acetone in urine samples. This analyte can be used as a biomarker for some fat metabolism-related diseases in humans and cows. Samples require no pretreatment other than warming at 80 °C for 5 min, after which an N2 stream is used to drive volatile analytes to the ion mobility spectrometer. The precision of the ensuing method, expressed as relative standard deviation (%RSD), is better in all cases than 6.7% for peak height and calculated at three levels of concentration. The analyte concentration range studied was from 5 to 80 mg L−1, its limit of detection in the aqueous matrix 3 mg L−1 and recoveries from spiked urine samples 109 ± 3%. The calculated reduced mobility for acetone in the urine samples, 1.75 ± 0.04 cm2 V−1 s−1, was similar to previously reported values. Also, the results were consistent with those provided by test strips used for reference. The proposed method provides a new vanguard screening system for determining acetone in urine samples.  相似文献   

13.
Use of seawater electrolytically enriched with hypochlorite and the in situ generation of hypochlorite on the high seas, stand a good chance for disinfection and decrease of bio and non-biodegradable organics in effluent before discharged into estuaries and deep oceans. Enriched seawater effectively decreased the biological oxygen demand measured over 5 days (BOD) and chemical oxygen demand (COD) levels of semi-treated wastewater. The oxidative degradation of Brilliant Blue, a triaryl industrial dye by hypochlorite and electrolytically enriched seawater are compared at pH 6.5. Both had similar magnitude second-order rate constants (21±1 M−1 s−1) and procedure is feasible. Increase in acid concentration enhanced the reaction rate. With 1:1 and 1:100 molar ratios of dye to hypochlorite, the COD=140 mg L−1 of 1.0×10−3 M dye reduced to 100 and 30 mg L−1 respectively.  相似文献   

14.
A novel and high throughput chemiluminescence (CL) method for determination of chemical oxygen demand (COD) in water sample was originally developed based on potassium permanganate-glutaraldehyde CL system. With this method, dissolved organic matter in water samples was digested by excess acid potassium permanganate, the reacted mixture solutions containing surplus KMnO4 were added in wells of a 96-well plate, followed by injection of glutaraldehyde in the wells, and CL was then produced along with the reaction of the added glutaraldehyde with the surplus KMnO4 and detected by a photomultiplier tube (PMT). The difference (ΔI) between the CL intensity for distilled water and that for sample water was proportional to the COD value of water sample. The calibration graph was linear in the range of 0.16-19.24 mg L−1 with a detection limit of 0.1 mg L−1. A complete analysis could be performed in 40 min including digestion and detection, giving a very high throughput of 3 × 96 samples in about 60 min. Compared with the conventional methods, this method is simple and sensitive and consumes very limited and cheap reagents. Owing to its rapid, automatic, high throughput and low cost characteristics, the presented CL method has been applied successfully to the determination of COD in real water samples (n = 32) with satisfactory results.  相似文献   

15.
Methods for short-term BOD analysis (BODst) based on ferricyanide mediator reduction have succeeded in overcoming some problems associated with the standard BOD test analysis (BOD5) such as long-term incubations (5 days), the need to dilute samples and low reproducibility. Here we present a bioassay where a Klebsiella pneumoniae environmental strain successfully reduces ferricyanide without de-aeration of the samples with linear BOD5 ranges between 30 and 500 mg L−1 or 30 and 200 mg L−1, using glucose-glutamic acid solution (GGA) or OECD standards respectively. We further propose a new assay termination solution that allows higher reproducibility and standardization of the cell-based assay, employing formaldehyde (22.7 g L−1) or other compounds in order to stop ferricyanide reduction without affecting the amperometric detection and therefore replace the centrifugation step normally used to stop microbial-driven reactions in ferricyanide-mediated bioassays. These improvements led to an accurate determination of real municipal wastewater samples.  相似文献   

16.
Antimony (Sb) contamination has become a growing concern in recent years. Strategies for reducing Sb contamination and its related health risks are urgently desired. This study was conducted to explore the possibility of selenium (Se) detoxification on Sb toxicity in paddy rice in order to find a feasible method to reduce the health risk of Sb pollution. Seedlings of paddy rice were exposed to 5 mg L1 Sb (KSbC4H4 O7·1/2H2O), in the presence of Se (Na2SeO3) at 0.1, 1, 5 mg L1 in culture solution, with no Sb and Se addition as the control. Paddy rice took up Sb greatly and the highest Sb contents measured among all treatments in this experiment in the leaves, stems and roots were 65.5, 298.5 and 195.7 mg kg1, respectively. Without Sb addition in the solution, single exposure to 0.1 mg L1 Se remarkably reduced the malondialdehyde (MDA) formation in paddy rice,demonstrating the beneficial effect of Se at low dosages. The addition of 5 mg L1 Sb was found to generate toxicity to paddy rice, showing as decreased biomass and increased leaf MDA content in paddy rice, while addition of 1 mg L1 Se mitigated the toxicity of Sb, as seen with the decreased leaf MDA content and increased biomass, indicating antidotal role of Se to Sb. In addition, the presence of 0.1, 1, 5 mg L1 Se generally decreased the accumulation of Sb in the leaves, stems and roots in paddy rice. Toxicity was also seen when paddy rice was exposed to single Se at 1 and 5 mg L1 levels, however, 5 mg L1 Sb addition was found to decrease the contents of Se in the leaves/stems whereas increased them in roots, accompanied with decreased MDA contents and increased biomass in paddy rice, indicating a possible detoxification role of Sb to Se too. Therefore, Sb, although toxic, could also be an antitoxin to Se in paddy rice at certain condition. Our results showed that Se could alleviate Sb toxicity efficiently in paddy rice through two effects as antagonism and antioxidation.  相似文献   

17.
Chai Y  Ding H  Zhang Z  Xian Y  Pan Z  Jin L 《Talanta》2006,68(3):610-615
A new photocatalytic system, nano-TiO2-Ce(SO4)2 coexisted system, which can be used to determine the low chemical oxygen demand (COD) is described. Nano-TiO2 powders is used as photocatalyst in this system. The measuring method is based on direct determination of the concentration change of Ce(IV) resulting from photocatalytic oxidation of organic compounds. The mechanism of the photocatalytic oxidation for COD determination was discussed and the optimum experimental conditions were investigated. Under the optimum conditions, a good calibration graph for COD values between 1.0 and 12 mg l−1 was obtained and the LOD value was achieved as low as 0.4 mg l−1. When determining the real samples, the results were in good agreement with those from the conventional methods.  相似文献   

18.
The paper presents a new method for a simultaneous determination of inorganic nitrogen species in the oxidized (NO2, NO3) and reduced (NH4+) form in rain water samples. The method is based on a system of nitrogen species separation employing ion exchange and diode-array detection. The ions are separated in a strong ion-exchanger, nitrites and nitrates are determined directly at 208 and 205 nm, respectively, while the ammonium ions are determined in the column hold-up time after a post-column derivatization by the Nessler reagent, at 425 nm. The use of a diode-array detector permits a simultaneous identification of the inorganic nitrogen species in 8 min. The detection limits obtained are: NO2, 0.1 mg L−1; NO3, 0.05 mg L−1; NH4+, 1 mg L−1. The method proposed has been successfully used for speciation analysis of inorganic nitrogen in precipitation.  相似文献   

19.
The presence of trace neutral organonitrogen compounds as carbazole and indole in derivative petroleum fuels plays an important role in the car's engine maintenance. In addition, these substances contribute to the environmental contamination and their control is necessary because most of them are potentially carcinogenic and mutagenic. For those reasons, a reliable and sensitive method was proposed for the determination of neutral nitrogen compounds in fuel samples, such as gasoline and diesel using preconcentration with modified silica gel (Merck 70-230 mesh ASTM) followed by differential pulse voltammetry (DPV) technique on a glassy carbon electrode. The electrochemical behavior of carbazole and indole studied by cyclic voltammetry (CV) suggests that their reduction occurs via a reversible electron transfer followed by an irreversible chemical reaction. Very well resolved diffusion controlled voltammetric peaks were obtained in dimethylformamide (DMF) with tetrabutylammonium tetrafluoroborate (TBAF4 0.1 mol L−1) for indole (−2.27 V) and carbazole (−2.67 V) versus Ag|AgCl|KClsat reference electrode. The proposed DPV method showed a good linear response range from 0.10 to 300 mg L−1 and a limit of detection (L.O.D) of 7.48 and 2.66 μg L−1 for indole and carbazole, respectively. The results showed that simultaneous determination of indole and carbazole presents in spiked gasoline samples were 15.8 ± 0.3 and 64.6 ± 0.9 mg L−1 and in spiked diesel samples were 9.29 ± 1 and 142 ± 1 mg L−1, respectively. The recovery was evaluated and the results shown the values of 88.9 ± 0.4 and 90.2 ± 0.8% for carbazole and indole in fuel determinations. The proposed method was also compared with UV-vis spectrophotometric measures and the results obtained for the two methods were in good agreement according to the F and t Student's tests.  相似文献   

20.
In the present study, an analytical procedure was developed for the determination of short-chain fatty acids (SCFAs) in landfill leachate and municipal wastewater employing injection of aqueous samples to gas chromatograph with flame ionization detector (GC-FID). Chromatographic conditions such as a separation system, injection volume, oven temperature program were investigated and selected. With two columns, one with a polar (polyethylene glycol) and one with a non-polar (dimethylpolisiloxane) stationary phase, good separation of SCFAs, containing from 2 to 8 carbon atoms, was achieved. The sample volume was 2 μL and the temperature program 80 °C (30 s) then 7 °C min−1 to 220 °C (2 min). LOQs values were below 0.25 mg L−1. The concentrations of the acids in the landfill leachate studied ranged from 0.45 ± 0,059 (average ± extended uncertainty) mg L−1 for pentanoic acid to 15.2 ± 0.73 mg L−1 for ethanoic acid. Concentrations of SCFAs in the municipal wastewater were lower than LOQs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号