首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The method of ultrasound-assisted extraction followed by inductively coupled plasma optical emission spectrometry (ICP-OES) used for the determination of trace element concentrations (arsenic, copper, lead, antimony, and zinc) in shooting range areas was optimized. Optimization was achieved not only on the basis of the analysis of appropriate standard reference materials but also on that of 31 synthetic mixtures of matrix and analyte elements (aluminum, antimony, arsenic, calcium, copper, lead, iron, manganese, silicon, and zinc), in five concentrations. All the measurements were performed in robust plasma conditions which were tested by measuring the Mg II 280.270 nm/Mg I 285.213 nm line intensity ratio. The highest Mg II 280.270 nm/Mg I 285.213 nm line intensity ratios were observed when a nebulizer gas flow of 0.8 L min−1, auxiliary gas flow of 0.2 L min−1 and plasma power of 1400 W were used for both the axially and radially viewed plasmas. The analysis of 31 synthetic mixtures of the selected elements showed that As concentrations could be accurately determined with axially viewed plasma alone. The determination of Pb and Sb could be performed with either axially or radially viewed plasma whereas, surprisingly, Cu could be determined with high accuracy using radial plasma alone with a power of 1400 W. All the elements investigated were determined with high accuracy using robust plasma conditions and a combination of axially and radially viewed plasmas. The total recoveries of elements from SRM 2710 (Montana soil) and SRM 2782 (Industrial sludge) were highly comparable to leach recoveries certified by the National Institute of Standards and Technology (NIST).  相似文献   

2.
Twelve commercially available edible marine algae from France, Japan and Spain and the certified reference material (CRM) NIES No. 9 Sargassum fulvellum were analyzed for total arsenic and arsenic species. Total arsenic concentrations were determined by inductively coupled plasma atomic emission spectrometry (ICP-AES) after microwave digestion and ranged from 23 to 126 μg g−1. Arsenic species in alga samples were extracted with deionized water by microwave-assisted extraction and showed extraction efficiencies from 49 to 98%, in terms of total arsenic. The presence of eleven arsenic species was studied by high performance liquid chromatography–ultraviolet photo-oxidation–hydride generation atomic–fluorescence spectrometry (HPLC–(UV)–HG–AFS) developed methods, using both anion and cation exchange chromatography. Glycerol and phosphate sugars were found in all alga samples analyzed, at concentrations between 0.11 and 22 μg g−1, whereas sulfonate and sulfate sugars were only detected in three of them (0.6-7.2 μg g−1). Regarding arsenic toxic species, low concentration levels of dimethylarsinic acid (DMA) (<0.9 μg g−1) and generally high arsenate (As(V)) concentrations (up to 77 μg g−1) were found in most of the algae studied. The results obtained are of interest to highlight the need to perform speciation analysis and to introduce appropriate legislation to limit toxic arsenic species content in these food products.  相似文献   

3.
Iron modified materials have been proposed as a filter medium to remove arsenic compounds from groundwater. This research investigated the removal of arsenate, As(V) from aqueous solutions by iron-coated light expanded clay aggregates (Fe-LECA). Arsenic is effectively adsorbed by Fe-LECA in the optimum pH range 6-7 by using a 10 mg mL− 1 adsorbent dose. Kinetics experiments were performed to investigate the adsorption mechanisms. Electrostatic attraction and surface complexation were proposed to be the major arsenic removal mechanisms. The experimental data fitted the pseudo-first-order equation of Lagergren. For an arsenic concentration of 1 mg L− 1, the rate constant (k1) of pseudo-first-order was 0.098 min− 1, representing a rapid adsorption in order to reach equilibrium early. Equilibrium sorption isotherms were constructed from batch sorption experiments and the data was best described by the Langmuir isotherm model. Large scale column experiments were conducted under different bed depths, flow rates, coating duration and initial iron salts concentration to determine the optimal arsenic removal efficiency by Fe-LECA column. Volumetric design as well as higher hydraulic detention time was proposed to optimize the efficiency of the column to remove arsenic. In addition, concentrated iron salts and longer coating duration were also found to be crucial parameters for arsenic removal. The maximum arsenic accumulation was 3.31 mg of As g− 1 of Fe-LECA when the column was operated at a flow rate of 10 mL min− 1 and the LECA was coated with 0.1 M FeCl3 suspension for a 24 h coating duration.  相似文献   

4.
When tin is to be determined in such a complex matrix like aqua regia extracts of environmental samples by electrothermal atomic absorption spectrometry (ETAAS), spectral interferences occur when deuterium-lamp (D2) background correction is used, even using high pyrolysis temperature of 1400 °C achieved with palladium with citric acid chemical modifier. We have found that the further addition of NH4F to palladium with citric acid chemical modifier is essential for overcoming the above-mentioned problems for which aluminium oxide is most probably responsible. It is supposed, that NH4F enables volatilization of the alumina matrix formed by hydrolysis from the chloride salt and interfering in a gas phase via the formation of AlF3 which could be, in contrast to aluminium oxide, removed from the graphite furnace during the pyrolysis stage. Using the proposed chemical modifier, the direct and accurate determination of Sn in aqua regia extracts from rocks, soils and sediments is possible even when using matrix free standard solutions. This presumption was confirmed by the analysis of certified reference samples and by the comparison with inductively coupled plasma time of flight mass spectrometry (ICP-TOFMS) method. Characteristic mass and LOD value for the original sample (10-μL aliquots of sample) was 17 pg and 0.055 μg g−1, respectively.  相似文献   

5.
A systematic study on the high-temperature Torch Integrated Sample Introduction System (TISIS) for use in Inductively Coupled Plasma Mass Spectrometry (ICP-MS) has been performed. The investigation included the optimization of the relevant parameters (chamber temperature, sheathing gas flow rate, nebulizer gas flow rate, sample uptake rate), the evaluation of its performance characteristics (sensitivity, limits of detection, stability, memory effects, use with the dynamic reaction cell) and representative applications to environmental, biological and clinical samples. Under the optimal conditions (T = 150 °C; nebulizer gas flow rate of 0.7 L min−1 along with sheathing gas flow rate of 0.35 L min−1 and a sample uptake rate of 20 μL min−1), the sensitivity was from 2 to 8 times higher than that measured using a conventional micronebulizer/mini-spray chamber system, due to the enhanced analyte mass transport toward the plasma and the solvent introduction in the vapour form. In addition, for several elements, TISIS provided lower limits of detection than the conventional system, even when the latter worked at 5-fold higher sample uptake rate. Short-term and long-term precision was better than 5%. Spectroscopic interferences arising from common matrices were efficiently removed by the dynamic reaction cell technique. The application of TISIS/ICP-MS to representative certified reference samples (spinach leaves, marine plankton, bone tissue, human blood) proved the suitability of this system for the accurate analysis of limited-size samples.  相似文献   

6.
A microwave assisted wet digestion method for organoarsenic compounds and subsequent determination of total arsenic in aqueous, biological and sediment samples by means of flow injection hydride generation electrothermal atomic absorption spectrometry (FI-HG-ETAAS) is described. Sodium persulfate, sodium fluoride and nitric acid serve as digestion reagents, which allow a quantitative transformation of organoarsenic compounds to hydride forming species in a commercial microwave sample preparation system. The maximum operating pressures of the applied tetrafluorometoxil (TFM) liners are 75 bar (high pressure vessels) and 30 bar (medium pressure vessels), corresponding to maximum solution temperatures of 300 and 260 °C. For the investigated samples, digestion temperatures of 210-230 °C (medium pressure vessels) and 240-280 °C (high pressure vessels) were obtained.In medium pressure vessels, arsenic recovery from aqueous testing solutions of dimethylarsinic acid (DMA), phenylarsonic acid (PAA) and tetraphenylarsonium chloride (TPA) at initial concentrations of 100 and 10 μg l−1 is complete, even in the presence of an excess of organic carbon (potassium hydrogen phthalate, 2000 mg l−1) or fatty acids (linolenic acid 70%; linoleic acid ≈20-25%; Oleic acid ≈3%, 900-4500 mg l−1).Arsenic recovery from aqueous arsenobetaine (ASB) solutions with the same initial concentrations is also complete if high pressure vessels and a higher concentration of fluoride ions are used, whereas the addition of organic carbon (potassium hydrogen phthalate, 2000 mg l−1, fatty acids, 900-4500 mg l−1) leads to a decrease in arsenic recovery of about 2-5%. In all cases, residual carbon contents are close to the limit of detection for the applied analytical method (15 mg l−1).Results of arsenic analysis in reference standard materials revealed a significant dependence on the material’s nature (sediment samples, plant materials and seafood samples). Sediment samples and plant materials show recoveries for arsenic around 100% after a single-step digestion in medium pressure TFM liners. Seafood (fish/lobster/mussel samples) usually require either the use of high pressure vessels or a second digestion step, if medium pressure vessels are used.  相似文献   

7.
A flow injection hydride manifold was coupled to a 150 W tungsten coil electrothermal atomizer for in situ hydride collection followed by selenium and arsenic determination by ET AAS. Rhodium (200 μg), thermally reduced over the double layer tungsten atomizer, was very efficient at collecting selenium or arsenic hydrides. Prior to analysis, biological samples were digested in closed-vessels microwave digestion system. Prior to the hydride formation, both selenium and arsenic were reduced to valence state (IV) and (III), respectively. The detection limit was 35 ng L−1 for selenium and 110 ng L−1 for arsenic. Sample throughput was 70 h−1 using 30 s of hydride trapping time. Method accuracy was evaluated by analyzing biological-certified reference materials from the National Institute of Standard and Technology (SRM-1577a and SRM-1577b “bovine liver” and RM-8414 “bovine muscle powder”) and from the International Agency for Energy Atomic (A-13 “animal blood”) and one water-certified reference material from the National Institute of Standard and Technology (SRM-1640 trace elements in natural water). By applying a t-test, there was no significant difference at the 95% probability level between the results obtained with the proposed method and those certified values.  相似文献   

8.
A simple and fast method for the determination of Se in biological samples, including food, by axial view inductively coupled plasma optical emission spectrometry using on-line chemical vapor generation (CVG–ICP OES) is proposed. The concentrations of HCl and NaBH4, used in the chemical vapor generation were optimized by factorial analysis. Six certified materials (non-fat milk powder, lobster hepatopancreas, human hair, whole egg powder, oyster tissue, and lyophilised pig kidney) were treated with 10 mL of aqua regia in a microwave system under reflux for 15 min followed by additional 15 min in an ultrasonic bath. The solutions were transferred to a 100 mL volumetric flask and the final volume was made up with water. The Se was determined directly in these solutions by CVG–ICP OES, using the analytical line at 196.026 nm. Calibration against aqueous standards in 10% v/v aqua regia in the concentration range of 0.5–10.0 µg L 1 Se(IV) was used for the analysis. The quantification limit, considering a 0.5 g sample weight in a final volume of 100 mL 1 was 0.10 µg g 1. The obtained concentration values were in agreement with the total certified concentrations, according to the t-test for a 95% confidence level.  相似文献   

9.
The objective of this study is to evaluate the performance of two lab-made systems based on the Multimode Introduction System (MSIS™) and the modified MSIS™, to generate and introduce vapors of Ag, Cu, Cd, Cu, Ni, Sn, Zn, and also Au in the ICP torch. An univariate procedure was used to select the optimized working conditions (Ar flow, sample, reductant and waste flows, and reagent concentrations). Optimum conditions for working with modified MSIS were: nitric acid concentration 0.35 M, 8-hydroxyquinoline concentration: 40 mg L−1, sodium borohydride concentration: 1.75% (w/v) + 0.4% (w/v) NaOH, argon purge flow to sweep the vapors to the torch: 1.2 L min−1, sample flow and sodium borohydride flows: 2.3 L min−1; waste flow: 7.7 mL min−1. For the optimum working conditions for lab-made MSIS in dual mode the concentration of 8-hydroxyquinoline was 225 mg L−1, the Ar purge flow was 0.75 L min−1, and the conventional nebulization flow was 2.3 L min−1. The sensitivity obtained was higher using the lab-made MSIS than using the lab-made modified MSIS or a forced outlet gas–liquid separator. The limits of detection were better for Au, Cd, Sn than those obtained using conventional nebulization; the measurements were precise (RSDs ≤ 5% in dual mode) and a good accuracy was obtained in the determination of Cd, Cu, Ni and Zn in a wastewater reference material using aqueous calibration and the lab-made MSIS in dual mode.  相似文献   

10.
The determination of chromium (52Cr), iron (56Fe) and selenium (80Se) isotopes in foodstuffs of animal origin has been performed by collision cell technology (CCT) mode using an inductively coupled plasma mass spectrometry (ICP-MS) as detector after closed vessel microwave digestion. To significantly decrease the argon-based interferences at mass to charge ratios (m/z): 52 (40Ar12C), 56 (40Ar16O) and 80 (40Ar40Ar), the gas-flow rates of a helium and hydrogen mixture used in the hexapole collision cell were optimised to 1.5 ml min−1 H2 and 0.5 ml min−1 He and the quadrupole bias was adjusted daily between −2 and −15 mV. Limits of quantification (LOQ) of 0.025, 0.086 and 0.041 mg kg−1 for Cr, Fe and Se, respectively, in 6% HNO3 were estimated under optimized CCT conditions. These LOQ were improved by a factor of approximately 10 for each element compared to standard mode.Precision under repeatability, intermediate precision reproducibility and trueness have been tested on nine different certified reference materials in foodstuffs of animal origin and on an external proficiency testing scheme. The results obtained for chromium, iron and selenium were in all cases in good agreement with the certified values and trueness was improved, compared to those obtained in standard mode.  相似文献   

11.
The mixture of palladium (chloride) with citric acid and lithium is proposed as a new chemical modifier for the elimination of interference occurred during the determination of Tl in aqua regia extracts from rocks, soils and sediments by electrothermal atomic absorption spectrometry using instrumentation with deuterium-lamp background correction (D2-ETAAS). Palladium was preferred to rhodium and platinum as to analyte stabilization, citric acid served as an effective reducing agent facilitating formation of Pd-Tl stable covalent bonds playing an important role in the analyte stabilization. Citric acid in addition helps to remove most of interfering chloride at low temperature. The further addition of Li increased significantly the robustness of chemical modifier against strongly interfering ZnCl2 matrix by binding free chlorine into a more stable LiCl molecule. In the presence of the proposed chemical modifier the temperature for the final step of pyrolysis was adjustable up to 1000 °C, without any noticeable loss of volatile Tl species and the interference of the rest chloride matrix was significantly reduced. The application of the modifier to direct determination of Tl in aqua regia extracts from rocks, soils and sediments has ensured the characteristic mass and LOD value for the original sample 13 pg and 0.043 μg g−1, respectively (10-μL aliquots of sample) and has enabled the use of matrix-free standard solutions for attaining accurate analysis. The accuracy was verified by the analysis of certified reference samples and by the comparison of results with those found by an inductively coupled plasma orthogonal acceleration time-of-flight mass spectrometer (ICP-oa-TOFMS) method.  相似文献   

12.
A sensitive and robust analytical method for spectrophotometric determination of ethyl xanthate, CH3CH2OCS2 at trace concentrations in pulp solutions from froth flotation process is proposed. The analytical method is based on the decomposition of ethyl xanthate, EtX, with 2.0 mol L−1 HCl generating ethanol and carbon disulfide, CS2. A gas diffusion cell assures that only the volatile compounds diffuse through a PTFE membrane towards an acceptor stream of deionized water, thus avoiding the interferences of non-volatile compounds and suspended particles. The CS2 is selectively detected by UV absorbance at 206 nm (? = 65,000 L mol−1 cm−1). The measured absorbance is directly proportional to EtX concentration present in the sample solutions. The Beer's law is obeyed in a 1 × 10−6 to 2 × 10−4 mol L−1 concentration range of ethyl xanthate in the pulp with an excellent correlation coefficient (r = 0.999) and a detection limit of 3.1 × 10−7 mol L−1, corresponding to 38 μg L−1. At flow rates of 200 μL min−1 of the donor stream and 100 μL min−1 of the acceptor channel a sampling rate of 15 injections per hour could be achieved with RSD < 2.3% (n = 10, 300 μL injections of 1 × 10−5 mol L−1 EtX). Two practical applications demonstrate the versatility of the FIA method: (i) evaluation the free EtX concentration during a laboratory study of the EtX adsorption capacity on pulverized sulfide ore (pyrite) and (ii) monitoring of EtX at different stages (from starting load to washing effluents) of a flotation pilot plant processing a Cu-Zn sulfide ore.  相似文献   

13.
Chicken is the most consumed meat in North America. Concentrations of arsenic in chicken range from μg kg−1 to mg kg−1. However, little is known about the speciation of arsenic in chicken meat. The objective of this research was to develop a method enabling determination of arsenic species in chicken breast muscle. We report here enzyme-enhanced extraction of arsenic species from chicken meat, separation using anion exchange chromatography (HPLC), and simultaneous detection with both inductively coupled plasma mass spectrometry (ICPMS) and electrospray ionization tandem mass spectrometry (ESIMS). We compared the extraction of arsenic species using several proteolytic enzymes: bromelain, papain, pepsin, proteinase K, and trypsin. With the use of papain-assisted extraction, 10 arsenic species were extracted and detected, as compared to 8 detectable arsenic species in the water/methanol extract. The overall extraction efficiency was also improved using a combination of ultrasonication and papain digestion, as compared to the conventional water/methanol extraction. Detection limits were in the range of 1.0–1.8 μg arsenic per kg chicken breast meat (dry weight) for seven arsenic species: arsenobetaine (AsB), inorganic arsenite (AsIII), dimethylarsinic acid (DMA), monomethylarsonic acid (MMA), inorganic arsenate (AsV), 3-nitro-4-hydroxyphenylarsonic acid (Roxarsone), and N-acetyl-4-hydroxy-m-arsanilic acid (NAHAA). Analysis of breast meat samples from six chickens receiving feed containing Roxarsone showed the presence of (mean ± standard deviation μg kg−1) AsB (107 ± 4), AsIII (113 ± 7), AsV (7 ± 2), MMA (51 ± 5), DMA (64 ± 6), Roxarsone (18 ± 1), and four unidentified arsenic species (approximate concentration 1–10 μg kg−1).  相似文献   

14.
A method for simultaneous determination of seven benzodiazepines (BZPs) (flunitrazepam, clonazepam, oxazepam, lorazepam, chlordiazepoxide, nordiazepam and diazepam using N-desalkylflurazepam as internal standard) in human plasma using liquid-liquid and solid-phase extractions followed by high-performance liquid chromatography (HPLC) is described. The analytes were separated employing a LC-18 DB column (250 mm × 4.6 mm, 5 μm) at 35 °C under isocratic conditions using 5 mM KH2PO4 buffer solution pH 6.0:methanol:diethyl ether (55:40:5, v/v/v) as mobile phase at a flow rate of 0.8 mL min−1. UV detection was carried out at 245 nm. Employing LLE, the best conditions were achieved with double extraction of 0.5 mL plasma using ethyl acetate and Na2HPO4 pH 9.5 for pH adjusting. Employing SPE, the best conditions were achieved with 0.5 mL plasma plus 3 mL 0.1 M borate buffer pH 9.5, which were then passed through a C18 cartridge previously conditioned, washed for 3 times with these solvents: 3 mL 0.1 M borate buffer pH 9.5, 4 mL Milli-Q water and 1 mL acetonitrile 5%, finally the BZPs elution was carried with diethyl ether:n-hexane:methanol (50:30:20). In both methods the solvent was evaporated at 40 °C under nitrogen flow. The validation parameters obtained in LLE were linearity range of 50-1200 ng mL−1 plasma (r ≥ 0.9927), limits of quantification of 50 ng mL−1 plasma, within-day and between-day CV% and E% for precision and accuracy lower than 15%, and recovery above 65% for all BZPs. In SPE, the parameter obtained were linearity range of 30-1200 ng mL−1 plasma (r ≥ 0.9900), limits of quantification of 30 ng mL−1 plasma, within-day and between-day CV% and E% for precision and accuracy lower than 15% and recovery above 55% for all BZPs. These extracting procedures followed by HPLC analysis showed their suitable applicability in order to examine one or more BZPs in human plasma. Moreover, it could be suggested that these procedures might be employed in various analytical applications, in special for toxicological/forensic analysis.  相似文献   

15.
Chen L  Ding L  Yu A  Yang R  Wang X  Li J  Jin H  Zhang H 《Analytica chimica acta》2007,596(1):164-170
This paper describes a new method for the determination of total flavonoids in Platycladus orientalis (L.) Franco. The method was based on dynamic microwave-assisted extraction (DMAE) coupled with on-line derivatization and ultraviolet-visible (UV-vis) detection. The influence of the experimental conditions was tested. Maximum extraction yield was achieved using 80% aqueous methanol of extraction solvent; 80 W of microwave output power; 5 min of extraction time; 1.0 mL min−1 of extraction solvent flow rate. The derivatization reaction between aluminium chloride and flavonoid is one of the most sensitive and selective reactions for total flavonoids determination. The optimized derivatization conditions are as follows: derivatization reagent 1.5% aluminium chloride methanol solution; reaction coil length 100 cm; derivatization reagent flow rate 1.5 mL min−1. The detection and quantification limits obtained are 0.28 and 0.92 mg g−1, respectively. The intra-day and inter-day precisions (R.S.D.) obtained are 1.5% and 4.6%, respectively. Mean recovery is 98.5%. This method was successfully applied to the determination of total flavonoids in P. orientalis (L.) Franco and compared with heat reflux extraction. The results showed that the higher extraction yield of total flavonoids was obtained by DMAE with shorter extraction time (5 min) and small quantity of extraction solvent (5 mL).  相似文献   

16.
Greice T. Macarovscha 《Talanta》2007,71(3):1150-1154
In the present work, an on-line pre-concentration system, using SiO2/ZrO2 as solid phase adsorbent, for the determination of low concentrations of arsenic was developed.In this procedure, total inorganic arsenic present in the sample is reduced to As (III) with l-cysteine and the solution is passed into a glass column (?i = 3 mm; h = 35 mm) containing 70 mg of SiO2/ZrO2 (100-230 mesh) to retain the As (III), with the solution flowing at 3.2 mL min−1. After 2 min, the concentrated species are eluted with 3 mol L−1 HCl (3.2 mL min−1) loading a 150 μL loop while a 1.0% (m/v) sodium borohydride solution loads the other loop of a FI-HG AAS system. The elution step is carried out during 7 s and, at the same time, the SiO2/ZrO2 phase is regenerated for the next concentration cycle. The arsine generated is carried with N2 (flow rate = 90 mL min−1) to a quartz cell where the electrothermal atomization process occurs.Under these conditions, a 20-fold enrichment factor is obtained considering the increase of sensitivity in the analytical curve after the concentration step. The limits of detection and quantification were 0.05 and 0.35 μg L−1, respectively, with an injection frequency of about 28 h−1 and relative standard deviation lower than 8%. Four metallurgical reference materials were analyzed with the proposed method after their acid dissolution. The results obtained were in good agreement with certified values.  相似文献   

17.
In this work several pre-treatment methods were studied for metal (Na, K, Mg, Cu and Ca) determination in Orujo spirit samples using inductively coupled plasma atomic emission spectrometry (ICP-AES). Dilution, digestion, evaporation, and cryogenic desolvatation techniques were comparatively evaluated. Because of their analytical characteristics, digestion and evaporation with nitrogen current were found to be appropriate procedures for the determination of metals in alcoholic spirit samples. Yet, if simplicity and application time are to be considered, the latter—evaporation in a water bath with a nitrogen current—stands out as the optimum procedure for any further determinations in Orujo samples by ICP-AES. Low detection levels and wide linear ranges (sufficient to determine these metals in the samples studied) were achieved for each metal. The recoveries (in the 97.5-100.5% range) and the precision (R.S.D. lower than 5.6%) obtained were also satisfactory. The selected procedure was applied to determine the content of metals in 80 representative Galician Orujo spirit samples with and without a Certified Brand of Origin (CBO) which had been produced using different distillation systems. The metal concentrations ranged between 0.37 and 79.7 mg L−1 for Na, <LOD to 12.4 mg L−1 for K, 0.02-4.83 mg L−1 for Mg content, <LOD to 37.3 mg L−1 for Cu and 0.03-13.10 mg L−1 for Ca.  相似文献   

18.
The feasibility of using diluted HNO3 solutions under oxygen pressure for decomposition of whole and non-fat milk powders and whey powder samples has been evaluated. Digestion efficiency was evaluated by determining the carbon content in solution (digests) and the determination of Ca, Cd, Cu, Fe, K, Mg, Mn, Mo, Na, Pb and Zn was performed by inductively coupled plasma optical emission spectrometry and Hg by chemical vapor generation coupled to inductively coupled plasma mass spectrometry. Samples (up to 500 mg) were digested using HNO3 solutions (1 to 14 mol L− 1) and the effect of oxygen pressure was evaluated between 2.5 and 20 bar. It was possible to perform the digestion of 500 mg of milk powder using 2 mol L− 1 HNO3 with oxygen pressure ranging from 7.5 to 20 bar with resultant carbon content in digests lower than 1700 mg L− 1. Using optimized conditions, less than 0.86 mL of concentrated nitric acid (14 mol L− 1) was enough to digest 500 mg of sample. The accuracy was evaluated by determination of metal concentrations in certified reference materials, which presented an agreement better than 95% (Student's t test, P < 0.05) for all the analytes.  相似文献   

19.
A low-flow air-cooled inductively coupled plasma (ICP) design for optical emission spectrometry (OES) with axial plasma viewing is described and an evaluation of its analytical capabilities in trace element determinations is presented. Main advantage is a total argon consumption of 0.6 L min−1 in contrast to 15 L min−1 using conventional ICP sources.The torch was evaluated in trace element determinations and studied in direct comparison with a conventional torch under the same conditions with the same OES system, ultrasonic nebulization (USN) and single-element optimization. A variety of parameters (x-y-position of the torch, rf power, external air cooling, gas flow rates and USN operation parameters) was optimized to achieve limits of detection (LOD) which are competitive to those of a conventional plasma source.Ionic to atomic line intensity ratios for magnesium were studied at different radio frequency (rf) power conditions and different sample carrier gas flows to characterize the robustness of the excitation source. A linear dynamic range of three to five orders of magnitude was determined under compromise conditions in multi-element mode. The accuracy of the system was investigated by the determination of Co, Cr, Mn, Zn in two certified reference materials (CRM): CRM 075c (Copper with added impurities), and CRM 281 (Trace elements in rye grass). With standard addition values of 2.44 ± 0.04 and 3.19 ± 0.21 μg g−1 for Co and Mn in the CRM 075c and 2.32 ± 0.09, 81.8 ± 0.4, 32.2 ± 3.9 for Cr, Mn and Zn, respectively, were determined in the samples and found to be in good agreement with the reported values; recovery rates in the 98-108% range were obtained. No influence on the analysis by the matrix load in the sample was observed.  相似文献   

20.
A study was conducted to develop a microwave-enhanced extraction method for the determination of arsenic species in prenatal and children's dietary supplements prepared from plant materials. The method was optimized by evaluating the efficiency of various solutions previously used to extract arsenic from the types of plant materials used in the dietary supplement formulations. A multivitamin standard reference material (NIST SRM 3280) and a prenatal supplement sample were analyzed in the method optimization. The identified optimum conditions were 0.25 g of sample, 5 mL of 0.3 mol L−1 orthophosphoric acid (H3PO4) and microwave heating at 90 °C for 30 min. The extracted arsenic was speciated by cation exchange ion chromatography–inductively coupled plasma mass spectrometry (IC–ICP-MS). The method detection limit (MDL) for the arsenic species was in the range 2–8 ng g−1. Ten widely consumed prenatal and children's dietary supplements were analyzed using the optimized protocol. The supplements were found to have total arsenic in the concentration range 59–531 ng g−1. The extraction procedure recovered 61–92% of the arsenic from the supplements. All the supplementary products were found to contain arsenite (As3+) and dimethylarsinic acid (DMA). Arsenate (As5+) was found in two of the supplements, and an unknown specie of arsenic was detected in one product. The results of the analysis were validated using mass balance by comparing the sum of the extracted and non-extracted arsenic with the total concentration of the element in the corresponding samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号