首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Zhuo SJ  Zheng H  Chen JL  Li DH  Wu YQ  Zhu CQ 《Talanta》2004,64(2):528-533
A new method was developed for determination of micro amounts of nucleic acids based on near-infrared (near-IR) fluorescence recovery, employing a two-reagent system which is composed of an anionic tetracarboxy aluminum phthalocyanine (AlC4Pc) and a cationic tetra-N-hexadecylpyridiniumyl porphyrin (TC16PyP). The fluorescence of the AlC4Pc, with the maximum emission wavelength at 701 nm, could be quenched by TC16PyP at its proper concentration, but recovered by adding nucleic acids. Under optimal conditions, the recovered fluorescence is proportional to the concentration of nucleic acids. The calibration graphs are linear over the range of 1-200 ng mL−1 for fish sperm DNA (FS DNA) and 2-400 ng mL−1 for calf thymus DNA (CT DNA). The corresponding detection limits are 0.59 ng mL−1 for FS DNA and 0.82 ng mL−1 for CT DNA, respectively. Four synthetic and three real nucleic acid samples were determined with satisfactory results.  相似文献   

2.
A new continuous fluorescence turn-on assay for protease activity and inhibitor screening has been developed. A fluorophore labeled single stranded DNA (FAM-DNA) and cytochrome c (cyt c) were employed. The fluorescence of the FAM-DNA was efficiently quenched when binding to cyt c, through the electron transfer between the FAM fluorophore and the heme cofactor of cyt c. In the presence of a protease, such as trypsin, cyt c was digested into small peptide fragments. The FAM-DNA was released, which resulted in the recovery of the FAM fluorescence. The rate of the cyt c digestion could be reduced via the addition of an inhibitor. As a result, reduced degree of the fluorescence recovery was obtained. The limit of detection of our assay is 1 nM trypsin and the IC50 values are 3.23 μg mL−1 and 0.303 μg mL−1 for the inhibitor from egg white and the inhibitor from soybean, respectively. Our method could be used for the sensing of protease activity for various biochemical applications, and for the screening of protease inhibitors as drugs for the treatment of various related diseases.  相似文献   

3.
For the detection of the major active component of cannabis, Δ9-tetrahydrocannabinol (THC) in aqueous samples, a homogeneous competitive immunoassay based on fluorescence quenching induced by fluorescence resonance energy transfer (FRET) has been developed. The fluorescence of anti-THC-antibody, labeled with fluorescence dye DY-481XL, can be quenched after its binding to THC-BSA-quencher conjugate (bovine serum albumin coupled with THC and another fluorescence dye, DYQ-661, as quencher). This quenching effect is inhibited when the antibodies bind to free THC in aqueous sample, thus competing for binding sites with the THC-BSA-quencher conjugate. The extent of the inhibition corresponds to the concentration of THC in the samples. The assay principle is simple and the test duration is within 10 min. The detection limit for THC in buffer was 2 ng mL−1. In pooled saliva samples a detection limit of 50 ng mL−1 was achieved.  相似文献   

4.
Changlun Tong  Zhou Hu 《Talanta》2007,71(2):816-821
The fluorescence intensity of the enoxacin (ENX)-Tb3+ complex enhanced by DNA was studied. On the basis of this study, an environmentally friendly fluorescence probe of enoxacin-Tb3+ for the determination of single-stranded and double-stranded DNA was developed. Under the optimal conditions, the enhanced fluorescence intensity was in proportion to the concentration of DNA in the range of 2.0 × 10−8 to 2.0 × 10−6 g mL−1 for hsDNA, 1.0 × 10−8 to 1.0 × 10−6 g mL−1 for ctDNA and 5.0 × 10−9 to 1.0 × 10−6 g mL−1 for thermally denatured ctDNA. The detection limits (S/N = 3) were 5.0, 9.0 and 3.0 ng mL−1, respectively. The interaction modes between ENX-Tb3+ and DNA and the mechanism of the fluorescence enhancement were also discussed in details. The experimental results from UV absorption spectra, fluorescence spectra and the competing combination tests between the ENX-Tb3+ complex and EB probe indicated that the possible interaction modes between enoxacin-Tb3+ complex and DNA had at least two different binding modes: the electrostatic binding and the intercalation binding. Additionally, this fluorescence probe was used to study the interaction between heavy metals and DNA.  相似文献   

5.
Based on CdTe/CdS quantum dots (CdTe/CdS QDs) fluorescence (FL) reversible control, a new and sensitive FL sensor for determination of anthraquinone (AQ) anticancer drugs (adriamycin and daunorubicin) and herring sperm DNA (hsDNA) was developed. Under the experimental conditions, FL of CdTe/CdS QDs can be effectively quenched by AQ anticancer drugs due to the binding of AQ anticancer drugs on the surface of CdTe/CdS QDs and photoinduced electron transfer (PET) process from CdTe/CdS QDs to AQ anticancer drugs. Addition of hsDNA afterwards brought the restoration of CdTe/CdS QDs FL intensity, as AQ anticancer drugs peeled off from the surface of CdTe/CdS QDs and embedded into hsDNA double helix structure. The liner ranges and the detection limits of FL quenching methods for two AQ anticancer drugs were 0.33-9 μg mL−1 and 0.09 μg mL−1 for ADM and 0.15-9 μg mL−1 and 0.04 μg mL−1 for DNR, respectively. The restored FL intensity was proportional to concentration of hsDNA in the range of 1.38-28 μg mL−1and the detection limit for hsDNA was 0.41 μg mL−1. It was applied to the determination of AQ anticancer drugs in human serum and urine samples with satisfactory results. The reaction mechanism of CdTe/CdS QDs FL reversible control was studied.  相似文献   

6.
Wu X  Zheng J  Ding H  Ran D  Xu W  Song Y  Yang J 《Analytica chimica acta》2007,596(1):16-22
It was found that oxolinic acid (OA) at high concentration can self-assemble into nano- to micro- meter scale OA aggregates in Tris-HCl (pH 7.48) buffer solution. The nanoparticles of OA were adopted as fluorescence probes in the quantitative analysis of proteins. Under optimum conditions, the fluorescence quenching extent of nanometer scale OA aggregates was in proportion to the concentration of albumins in the range of 3.0 × 10−8 to 3.0 × 10−5 g mL−1 for bovine serum albumin (BSA) and 8.0 × 10−8 to 8.0 × 10−6 g mL−1 for human serum albumin (HSA). The detection limits (S/N = 3) were 3.4 × 10−9 g mL−1 for BSA, and 2.6 × 10−8 g mL−1 for HSA, respectively. Samples were satisfactorily determined. The interaction mechanism of the system was studied using fluorescence, UV-vis, resonance light scattering (RLS) and transmission electron microscope (TEM) technology, etc., indicating that the nonluminescent complex was formed between serum albumin molecular and OA, to disaggregate the self-association of OA, which resulted in the dominated static fluorescence quenching in the system.  相似文献   

7.
Hu Z  Tong C 《Analytica chimica acta》2007,587(2):187-193
The fluorescence intensity of methylene blue (MB) quenched by DNA in the pH range of 6.5-8.0 was studied with synchronous fluorescence technology. A novel method for detecting single-stranded and double-stranded DNA was developed. The decreased fluorescence intensity at 664 nm is in proportion to the concentration of DNA in the range of 0.28-11.0 μmol L−1 for ctDNA, 0.14-8.25 μmol L−1 for thermally denatured ctDNA and 0.28-8.25 μmol L−1 for hsDNA. The detection limits (S/N = 3) are 0.11, 0.04 and 0.04 μmol L−1, respectively. The method is rapid, selective, and the reagents are lower toxic. It has been used for the determination of DNA in synthetic samples with good satisfaction. In addition, the interaction modes between MB and ctDNA and the mechanism of the fluorescence quenching were also discussed in detail. The experimental results from absorption spectra and fluorescence polarization indicate that the possible interaction modes between MB and DNA are the electrostatic binding and the intercalation binding.  相似文献   

8.
Hoogerheide JG  Scott RA 《Talanta》2005,65(2):453-460
A rapid and sensitive method for the determination of alkylating agents in complex reaction mixtures was developed and characterized. Analyses are based on the alkylation of 2-mercaptopyridine by the analyte; the derivative is separated by RP-HPLC and measured by fluorescence detection. When applied to the determination of dimethyl sulfate, the method is linear over four orders of magnitude: 0.01-10 μg mL−1. By using recrystallized 2-mercaptopyridine, quantitation limits of 10 ng mL−1 can be achieved. Precision of the assay is 2% R.S.D. in the 1-10 μg mL−1 range and about 15% R.S.D. at 10 ng mL−1. Studies on the pH dependence of the derivatization reaction were key to minimizing interference from the dimethyl sulfate degradation product, monomethyl sulfate, in quenched reaction samples.  相似文献   

9.
A novel photonic suspension array was developed for multiplex immunoassay. The carries of this array were silica colloidal crystal beads (SCCBs). The codes of these carriers are the characteristic reflection peak originated from their structural periodicity, and therefore they do not suffer from fading, bleaching, quenching, and chemical instability. In addition, because no dyes or materials related with fluorescence are included, the fluorescence background of SCCBs is very low. With a sandwich format, the proposed suspension array was used for simultaneous multiplex detection of tumor markers in one test tube. The results showed that the four tumor markers, α-fetoprotein (AFP), carcinoembryonic antigen (CEA), carcinoma antigen 125 (CA 125) and carcinoma antigen 19-9 (CA 19-9) could be assayed in the ranges of 1.0-500 ng mL−1, 1.0-500 ng mL−1, 1.0-500 U mL−1 and 3.0-500 U mL−1 with limits of detection of 0.68 ng mL−1, 0.95 ng mL−1, 0.99 U mL−1 and 2.30 U mL−1 at 3σ, respectively. The proposed array showed acceptable accuracy, detection reproducibility, storage stability and the results obtained were in acceptable agreement with those from parallel single-analyte test of practical clinical sera. This technique provides a new strategy for low cost, automated, and simultaneous multiplex immunoassay.  相似文献   

10.
Xiao-tong Chen 《Talanta》2010,80(5):1952-4801
A novel fluorescence turn-on detection method of human serum albumin (HSA) and bovine serum albumin (BSA) in aqueous solution is investigated using 2,4-dihydroxyl-3-iodo salicylaldehyde azine (DISA). Upon the addition of DISA to HSA/BSA solution, a fluorescence turn-on effect at 529 nm can be observed with a large stokes shift of ∼129 nm based on hydrophobic binding-mode between protein and dye. Under the optimal condition, the linear ranges of fluorescence intensity for HSA and BSA are 0.1-30 μg mL−1 with the relative correlation coefficient of R2 = 0.991 (n = 10) and 0.3-50 μg mL−1 with R2 = 0.997 (n = 10); and the detection limits for HSA and BSA based on IUPAC (CDL = 3Sb/m) are 20 ng mL−1 and 50 ng mL−1, respectively.  相似文献   

11.
The interaction of colloidal TiO2 nanoparticles with calf thymus-DNA was studied by using absorption, FT-IR, steady state and time resolved fluorescence spectroscopic techniques. The apparent association constant has been deduced (Kapp = 2.85 × 103 M−1) from the absorption spectral changes of the DNA-colloidal TiO2 nanoparticles using the Benesi–Hildebrand equation. Addition of colloidal TiO2 nanoparticles quenched the fluorescence of EtBr–DNA. The number of binding sites (n = 0.97) and the apparent binding constant (K = 6.68 × 103 M−1) were calculated from relevant fluorescence quenching data. The quenching, through a static mechanism, was confirmed by time resolved fluorescence spectroscopy.  相似文献   

12.
The interaction between colloidal AgTiO2 nanoparticles and bovine serum albumin (BSA) was studied by using absorption, steady state, time resolved and synchronous fluorescence spectroscopy measurements. Absorption spectroscopy proved the formation of a ground state BSA?AgTiO2 complex. Upon excitation of BSA, colloidal AgTiO2 nanoparticles effectively quenched the intrinsic fluorescence of BSA. The number of binding sites (n = 1.06) and apparent binding constant (K = 3.71 × 105 M−1) were calculated by the fluorescence quenching method. A static mechanism and conformational changes of BSA were observed.  相似文献   

13.
A fast, simple, and sensitive flow injection analysis method was developed for the measurement of semicarbazide-sensitive amine oxidase (SSAO) activity in human serum. Benzaldehyde, generated by the action of SSAO after incubation of serum with benzylamine, was derivatized with a novel aromatic aldehyde-specific reagent (1,2-diaminoanthraquinone) and the fluorescent product was measured by fluorescence detection at excitation and emission wavelengths of 390 and 570 nm, respectively. Serum SSAO activity was defined as benzaldehyde (nmol) formed per milliliter serum per hour. The method was linear over SSAO activity of 0.2–150.0 nmol mL−1 h−1 with a detection limit of 0.06 nmol mL−1 h−1. The %RSD of intra-day and inter-day precision did not exceed 9.4% and the accuracy ranged from −6.5 to −0.6%. The method was applied for the determination of the serum SSAO activity in healthy controls (C, n = 24) and diabetes mellitus patients (DM, n = 18). It was demonstrated that the activity (mean ± SE) of SSAO in diabetics sera was significantly higher than that in healthy subjects’ ones (DM; 73.3 ± 1.8 nmol mL−1 h−1vs C; 58.9 ± 2.2 nmol mL−1 h−1, P 0.01).  相似文献   

14.
The preparation of novel Staphylococcus aureus (S. aureus) amperometric immunosensing designs based on the covalent immobilization of RbIgG at gold electrodes using the heterobifunctional cross-linker 3,3-dithiodipropionic acid di(N-succinimidyl ester) (DTSP), are reported. Two different competitive immunosensing configurations have been tested and compared. In the first one, protein A-bearing S. aureus cells and HRP-labelled antiRbIgG compete for immobilized RbIgG binding sites, while in the second case HRP-labelled protein A was used. In both cases, the evaluation of the developed immunosensors performance was accomplished through the monitoring at 0.00 V (vs. Ag/AgCl) of the catalytic current originated after addition of hydrogen peroxide, using tetrathiafulvalene as redox mediator entrapped at the modified electrode surface by cross-linking with glutaraldehyde. Optimization of variables concerning the composition of the immunosensors as well as the detection conditions was carried out in 0.1 M NaAc/0.1 M NaCl buffer of pH 5.6. The configuration that employed antiRbIgG-HRP resulted in better analytical characteristics, with a detection limit of 1.4 × 104 cells mL−1 for S. aureus cells submitted to wall lyses by ultrasonic treatment. This immunosensor design was also evaluated using gold screen-printed electrodes in order to reduce the analysis time and cost. In this case, a limit of detection of 3.7 × 102 cells mL−1 and a dynamic range from 1.3 × 103 to 7.6 × 104 cells mL−1 was obtained. A RSD value of 10.5% was found for the responses to 9.6 × 103S. aureus cells mL−1 obtained with seven different Au/SPEs-immunosensors. These disposable immunosensors were applied to the quantification of S. aureus in milk spiked at two concentration levels, 1.2 × 103 and 4.8 × 103 cells mL−1, with good recoveries.  相似文献   

15.
Chen X  Dong Y  Fan L  Yang D 《Analytica chimica acta》2007,582(2):281-287
The fluorescence emitted by the functionalized ZnS nanocrystal at 440 nm could be efficiently enhanced or quenched when various peptides were added. The mechanism of the fluorescence enchancement and quenching of ZnS nanocrystals was discussed. The binding constant and numbers of binding sites was obtained from the Scatchard plot. The change of fluorescence intensity was in proportion to the concentration of peptides. The limits of detection were in range of 0.011-0.028 μg mL−1. Application results to synthetic samples showed simplicity, rapidity, high sensitivity and satisfactory reproducibility of the presented method. Measurements of real samples also give satisfactory results which were in good agreement with those obtained using high performance liquid chromatograph (HPLC) and liquid chromatograph-mass spectrograph (LC-MS) methods.  相似文献   

16.
Xiaoyu Liu  Jinghe Yang 《Talanta》2010,81(3):760-1691
A new method for detecting protein by synchronous fluorescence enhancement was developed, based on the combination of near infrared (NIR) fluorescence and the dedimerization phenomenon of methylene blue (MB). Under analytical conditions, there are linear relationships between the enhancing extent of synchronous fluorescence of MB-sodium dodecyl benzene sulfonate (SDBS)-protein at 667 nm and the concentration of protein in the range of 8.0 × 10−8-4.0 × 10−5 g mL−1 for bovine serum albumin (BSA), 1.0 × 10−7-3.5 × 10−5 g mL−1 for egg albumin (EA). The detection limits (S/N = 3) of BSA and EA are 8.9 ng mL−1 and 10.0 ng mL−1, respectively. The fluorescence enhancement mechanism is discussed in detail. Results from multiple techniques indicate that the fluorescence enhancement of the system originates from the hydrophobic microenvironment provided by BSA and SDBS, and the formation of an MB-SDBS-BSA complex, as well as the deaggregation of some MB dimer.  相似文献   

17.
In this study, we reported a convenient label-free fluorescence nanosensor for rapid detection of acid phosphatase on the basis of aggregation-caused quenching (ACQ) and enzymolysis approach. The selectivity nanosensor was based on the fluorescence “turn off–on” mode, which possessed high sensitivity features. The original strong fluorescence intensity of CuInS2 QDs was quenched by sodium hexametaphosphate (NaPO3)6. The high efficiency of the quenching was caused by the non-covalent binding of positively charged CuInS2 QDs to the negatively charged (NaPO3)6 through electrostatic interactions, aggregating to form a CuInS2 QDs/(NaPO3)6 complex. Adding acid phosphatase caused intense fluorescence of CuInS2 QDs/(NaPO3)6 to be recovered, and this was because of enzymolysis. (NaPO3)6 was hydrolyzed into small fragments and the high negative charge density decreased, which would weaken the strong electrostatic interactions. As a result, the quenched fluorescence “turned on”. Under the optimum conditions, there was a good linear relationship between I/I0 (I and I0 were the fluorescence intensity of CuInS2 QDs/(NaPO3)6 system in the presence and absence of acid phosphatase, respectively) and acid phosphatase concentration in the range of 75–1500 nU mL−1 with the detection limit of 9.02 nU mL−1. The proposed nanosensor had been utilized to detect and accurately quantify acid phosphatase in human serum samples with satisfactory results.  相似文献   

18.
A novel immunoassay format employing direct coating of small molecular hapten on microtiter plates is reported for the detection of atrazine and 2,4-dichlorophenoxyacetic (2,4-D). In this assay, the polystyrene surface of microtiter plates was first treated with an acid to generate -NO2 groups on the surface. Acid treated plates were further treated with 3-aminoprpyltriethoxysilane (APTES) to functionalize the plate surface with amino groups for covalent linkage to small molecular hapten with carboxyl groups. The modified plates showed significantly high antibody binding in comparison to plates coated with hapten-carrier protein conjugates and presented excellent stability as a function of the buffer pH and reaction time. The developed assay employing direct hapten coated plates and using affinity purified atrazine and 2,4-D antibodies demonstrated very high sensitivity, IC50 values for atrazine and 2,4-D equal to 0.8 ng mL−1 and 7 ng mL−1, respectively. The assay could detect atrazine and 2,4-D levels in standard water samples even at a very low concentration upto 0.02 and 0.7 ng mL−1 respectively in the optimum working range between 0.01 and 1000 ng mL−1 with good signal reproducibility (p values: 0.091 and 0.224 for atrazine and 2,4-D, respectively). The developed immunoassay format could be used as convenient quantitative tool for the sensitive screening of pesticides in samples.  相似文献   

19.
It was found the strong fluorescence emitted by the bis-benzimidazole derivative Hoechst 33258 at 490 nm could be efficiently quenched in pH 4.5 buffer when nucleic acids were added. Analysis of fluorescence intensity showed that the procedure was a static quenching dominated one, which was also demonstrated by the electron absorption spectra and lifetime of the excited state. The binding constant and numbers of binding sites were obtained from the Scatchard plot. The decreased fluorescence intensity was in proportion to the concentration of nucleic acids in the range 40-1800 ng ml−1 for dsDNA and 26-1700 ng ml−1 for ssDNA. The limits of detection were 12 and 8 ng ml−1, respectively. The sensitivity of the method was about 3.4 times higher for dsDNA detection and 5.4 times higher for ssDNA detection compared with the widely used fluorescence enhancement method using the same dye. Application results to synthetic samples showed simplicity, rapidity and satisfactory reproducibility of the presented method. Measurement of real samples extracted from leaves of Crassula argentea and E. coli genome also gave satisfactory results, which were in good agreement with those obtained using spectrophotometric method.  相似文献   

20.
Xi C  Liu Z  Kong L  Hu X  Liu S 《Analytica chimica acta》2008,613(1):83-90
In pH 4.2-4.8 HAc-NaAc buffer solution, folic acid (FA) could react with uranium (VI) to form a 2:1 anionic chelate which further reacted with some basic triphenylmethane dyes (BTPMD) such as Ethyl Violet (EV), Methyl Violet (MV) and Crystal Violet (CV) to form 1:2 ion-association complexes. As a result, not only the absorption spectra were changed, but also the intensities of resonance Rayleigh scattering (RRS) were enhanced greatly and the new RRS spectra were observed. The maximum RRS wavelengths were located at 328 nm for EV system, 325 nm for MV system and 328 nm for CV system. The fading degree (ΔA) and RRS intensities (ΔI) of three systems were different. Under given conditions, the ΔA and ΔI were all directly proportional to the concentration of FA. The linear ranges and the detection limits of RRS methods were 0.0039-5.0 μg mL−1 and 1.2 ng mL−1 for EV system, 0.0073-4.0 μg mL−1 and 2.2 ng mL−1 for MV system, 0.014-3.5 μg mL−1 and 4.7 ng mL−1 for CV system. The RRS methods exhibited higher sensitivity, so they are more suitable for the determination of trace FA. The optimum conditions, the influencing factors and the effects of coexisting substances on the reaction were investigated. The method can be applied to the determination of FA in serum and urine samples with satisfactory results. The structure of the ternary ion-association complex and the reaction mechanism were discussed in this work.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号