首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Erol Erça? 《Talanta》2009,78(3):772-90
Because of the extremely heterogeneous distribution of explosives in contaminated soils, on-site colorimetric methods are efficient tools to assess the nature and extent of contamination. To meet the need for rapid and low-cost chemical sensing of explosive traces or residues in soil and post-blast debris, a colorimetric absorption-based sensor for trinitrotoluene (TNT) determination has been developed. The charge-transfer (CT) reagent (dicyclohexylamine, DCHA) is entrapped in a polyvinylchloride (PVC) polymer matrix plasticised with dioctylphtalate (DOP), and moulded into a transparent sensor membrane sliced into test strips capable of sensing TNT showing an absorption maximum at 530 nm when placed in a 1-mm spectrophotometer cell. The sensor gave a linear absorption response to 5-50 mg L−1 TNT solutions in 30% aqueous acetone with limit of detection (LOD): 3 mg L−1. The sensor is only affected by tetryl, but not by RDX, pentaerythritoltetranitrate (PETN), dinitrotoluene (DNT), and picric acid. The proposed method was statistically validated for TNT assay against high performance liquid chromatography (HPLC) using a standard sample of Comp B. The developed sensor was relatively resistant to air and water, was of low-cost and high specificity, gave a rapid and reproducible response, and was suitable for field use of TNT determination in both dry and humid soil and groundwater with a portable colorimeter.  相似文献   

2.
Wang YQ  Zou WS 《Talanta》2011,85(1):469-475
New strategies for silica coating of inorganic nanoparticles became a research hotspot for enhancing the mechanical stability of colloidal particles and protecting colloidal particles against oxidation and agglomeration, and so on. In this paper, 3-aminopropyltriethoxysilane (APTES)-functionalized Mn doped (AF MnD) ZnS QDs was prepared to be firsyly through the use of silane coupling agents to form an active layer of silica, then sol-gel reaction of TEOS co-deposited with APTES on the surface of resultant active layer of silica. The emitted long lifetime room-temperature phosphorescence (RTP) of the resultant nanomaterials allows an appropriate delay time so that any fluorescent emission and scattering light can be easily avoided. The APTES anchored on the layer of silica can bind 2,4,6-trinitrotoluene (TNT) species to form TNT anion through acid-base pairing interaction, the TNT anion species may increase the charge-transfer pathways from the nanocrystals to nitroaromatic analytes, therefore further enhance the quenching efficiency of RTP. Moreover, APTES as capped reagents can enlarge the spectral sensitivity and enhance RTP response of nanocrystals to the electron-deficient nitroaromatic and nitrophenol species. Meanwhile, AF MnD ZnS QDs also exhibited a highly selective response toward TNT analyte through significant color change and quenching of 4T1 to 6A1 transition emission. This AF MnD ZnS QDs based sensor showed a very good linearity in the range of 0.05-1.8 μM with detection limit down to 50 nM (quenching percentage of phosphorescence intensity of 8%) and RSD of 3.5% (n = 5). The reported QDs-based chemosensors here open up a promising prospect for the sensitive and convenient sensing of TNT explosive.  相似文献   

3.
A polyclonal antibody against trinitrophenyl (TNP) derivatives was raised in rabbit, and the antibody was applied to detection of trinitrotoluene (TNT) using a surface plasmon resonance (SPR) biosensor. TNP-keyhole limpet hemocyanine (TNP-KLH) conjugate was injected into a rabbit, and a polyclonal anti-TNP antibody was realized after purification of the sera using protein G. Aspects of the anti-TNP antibody against various nitroaromatic compounds, such as cross-reactivities and affinities, were characterized. The temperature dependence of the affinity between the anti-TNP antibody and TNT was also evaluated. The quantification of TNT was based on the principle of indirect competitive immunoassay, in which the immunoreaction between the TNP-β-alanine-ovalbumin (TNP-β-ala-OVA) and anti-TNP antibody was inhibited in the presence of free TNT in solution. TNP-β-ala-OVA was immobilized to the dextran matrix on the Au surface by amine coupling. The addition of a mixture of free TNT to the anti-TNP antibody was found to decrease the incidence angle shift due to the inhibitory effect of TNT. The immunoassay exhibited excellent sensitivity for the detection of TNT in the concentration range of 3 × 10−11 to 3 × 10−7 g/ml. To increase the sensitivity of the sensor, anti-rabbit IgG antibody was used. After flowing the mixture of free TNT and anti-TNP antibody, anti-rabbit IgG antibody was injected, and the incidence angle shift was measured. Amplification of the signal was observed and the detection limit was improved to 1 × 10−11 g/ml.  相似文献   

4.
Here, a creatinine-modified CdSe/ZnS quantum dots fluorescent probe has been prepared and used for sensing 2,4,6,-trinitrotoluene explosive (TNT). The proposed method is based on the selective interaction between creatinine and nitroaromatic compounds according to the well-known Jaffé reaction. The procedure for the synthesis of creatinine-CdSe/ZnS reagent is very simple and reproducible and its fluorescent characteristics are reported. We found that the presence of TNT quenches the original fluorescence of creatinine-QD according to the Stern–Volmer model. Under the working conditions, the calibration plot of Io/I versus concentration of TNT was linear in the range 10–300 μg L−1 (R2 = 0.996). The mechanism interaction is discussed. The selectivity of fluorescence quenching of creatinine-QD for TNT has been evaluated. Finally, the potential application of the proposed methodology for the determination of TNT in spiked soils is demonstrated. For the analysis of soil samples a solid-liquid extraction is carried out and a four-point standard addition protocol is used to correct the matrix effect. The method, which is simple and rapid, allows the detection of 0.057 μg g−1 of TNT in soil samples. This sensor could be a useful tool for environmental studies, a crucial topic for nanotechnology nowadays.  相似文献   

5.
Antibodies are commonly used as recognition elements in immunoassays because of their high specificity and affinity, and have seen extensive use in competitive assays for the detection of small molecules. However, these complex molecules require production either in animals or by mammalian cell cultures, and are not easily tailored through genetic manipulation. Single chain antibodies (scFv), recombinantly expressed molecules consisting of only the antibody's binding region joined via a linking peptide, can provide an alternative to intact antibodies. We describe the characterization of a new monoclonal antibody (mAb), 2G5B5, able to detect the small molecule explosive 2,4,6-trinitrotoluene (TNT) and the scFv derived from its variable regions. The mAb and scFv were tested by surface plasmon resonance to determine their affinity for an immobilized TNT surrogate; dissociation constants were determined to be 1.5 × 10−13 M and 4.8 × 10−10 M respectively. Circular dichroism was used to determine their melting temperatures. The mAb is more stable melting at ∼75 °C while the scFv melts at ∼65 °C. The recognition elements were incorporated into a competitive assay format using a bead-based multiplexing platform to examine their sensitivity and specificity. The scFv was able to detect TNT ∼10-fold more sensitively than the mAb in this assay format, allowing detection of TNT concentrations down to at least 1 μg L−1. The 2G5B gave similar detection limits to a commercial anti-TNT mAb, but was less specific, recognizing 1,3,5-trinitrobenzene (TNB) equally well as TNT.  相似文献   

6.
This article reports on an integrated explosive-preconcentration/electrochemical detection system for 2,4,6-trinitrotoluene (TNT) vapor. The challenges involved in such system integration are discussed. A hydrogel-coated screen-printed electrode is used for the detection of the thermally desorbed TNT from a preconcentration device using rapid square wave voltammetry. Optimization of the preconcentration system for desorption of TNT and subsequent electrochemical detection was conducted yielding a desorption temperature of 120 °C under a flow rate of 500 mL min−1. Such conditions resulted in a characteristic electrochemical signal for TNT representing the multi-step reduction process. Quantitative measurements produced a linear signal dependence on TNT quantity exposed to the preconcentrator from 0.25 to 10 μg. Finally, the integrated device was successfully demonstrated using a sample of solid TNT located upstream of the preconcentrator.  相似文献   

7.
The contamination of soil by nitroaromatic and nitramine explosives is widespread during the manufacture, testing and disposal of explosives and ammunitions. The analysis for the presence of trace explosive contaminants in soil becomes important in the light of their effect on the growth of different varieties of plants and crops. 2,4,6-Trinitrotoluene (TNT), cyclotrimethylene trinitramine (Research Department explosive, RDX) and cyclotetramethylene tetranitramine (high melting point explosive, HMX), other related explosive compounds and their by-products must be monitored in soil and surrounding waterways since these are mutagenic, toxic and persistent pollutants that can leach from the contaminated soil to accumulate in the food chain. In this study, a voltammetric method has been developed for the determination of explosive such as RDX, HMX and TNT. The electrochemical redox behavior of RDX, HMX and TNT was studied through cyclic voltammetry and quantitative determination was carried out by using square wave voltammetry technique. Calibration curves were drawn and were linear in the range of 63-129 ppm for RDX with a detection limit of 10 ppm, 49-182 ppm for HMX with a detection limit of 1 ppm and 38-139 ppm for TNT with a detection limit of 1 ppm. This method was applied to determine the contaminations in several soil samples that yielded a relative error of 1% in the concentrations.  相似文献   

8.
A portable UV (190–400 nm) spectrophotometric based reflected fiber optic sensor system is presented for the on-site detection and identification of explosives. A reflected fiber optic sensor for explosives analysis was developed, with low sample consumption (20–100 nL) and a wide concentration quantification range (1.1–250 mg L−1). Seven common explosives [pentaerythritol tetranitrate (PETN), trinitrophenylmethylnitramine (CE), trinitrotoluene (TNT), dinitrotoluene (DNT), picric acid (PA), cyclotetramethylenetetranitramine (HMX), cyclotrimethylenetrinitramine (RDX)] and a PETN–RDX mixture (to simulate the Semtex used in many terrorist bombings) were quantitatively analyzed and identified by the proposed system in less than 3 s per test, with limits of detection (LOD) of 0.3 mg L−1. Due to chemical interference problems in the UV wavelengths range, a novel feature matching algorithm (FMA) was proposed for explosive identification, which was proved to have higher specificity and better anti-interference ability. Real post-blast debris samples were analyzed by the proposed method, and the results were validated against an LC/MS/MS method. The rapid, cost-effective detection with low sample consumption and wide applicability achieved by this system is highly suitable for homeland security on-site applications, such as rapid sample screening in post-blast debris.  相似文献   

9.
Fast, reliable and inexpensive analytical techniques for trace detection of explosive components are in high demand. Our approach is to develop specific sensor coating materials based on molecularly imprinted polymers (MIPs). Despite the known inhibition of radical polymerisations by nitro groups and the known shrinkage of the polymer lattice during/after drying we were able to synthesize particulate MIPs by suspension polymerisation as well as thin MIP coatings by direct surface polymerisation on quartz crystal microbalances (QCM). The best method to purify the porous beads was Soxhlet extraction followed by supercritical carbon dioxide extraction (SFE with sc-CO2) at mild conditions (150 bar, 50 °C). At least a removal of >99.7% of the template was achieved. Performance tests of TNT imprinted polymer beads showed that acrylamide (AA) and more pronounced also methacrylic acid (MAA) possessed an enhanced adsorption tendency for gaseous TNT. An adsorption of 2,4-DNT, dinitrotoluene, by these MIPs was not detected. Using 2,4-DNT as template and methacrylamide, MAAM, a positive imprint effect for gaseous 2,4-DNT was achieved with no measurable cross-sensitivity for 2,4,6-TNT.The thin MIP coatings directly synthesized on the QCMs showed thicknesses of 20 to up to 500 nm. Preliminary screening experiments were performed for five different monomers and three different solvents (acetonitrile, chloroform and dimethylformamide). Best adsorption properties for TNT vapour until now showed a PAA-MIP synthesized with chloroform. Direct measurements of the mass attachment, respectively frequency decrease of the coated QCMs during vapour treatment showed a TNT-uptake of about 150 pg per μg MIP per hour. Results look worthy for further studies.  相似文献   

10.
Wang J  Pumera M 《Talanta》2006,69(4):984-987
This paper reports on a microfluidic device for the flow-injection/electrochemistry analysis of nitroaromatic explosive. The response is very fast (150 assays/h), highly sensitive (detection limit 7.0 μg L−1), reproducible and stable (R.S.D. = 2.0%; n = 30) and linear (over 20-100 μg L−1 range). Relevant experimental parameters have been optimized. The new microsystem offers great promise for on-site monitoring of TNT, with significant advantages of speed/warning, sample size, efficiency and cost. Most favorable S/N characteristics were obtained at the Hg/Au-amalgam end-channel detector.  相似文献   

11.
We have developed a new immunosensor based on self-assembly chemistry for highly sensitive and label-free detection of 2,4,6-trinitrotoluene (TNT) using surface plasmon resonance (SPR). A monolayer of amine terminated poly(ethylene glycol) hydrazinehydrochloride (PEG-NH2) thiolate was constructed on an activated gold surface and immobilized with trinitrophenyl-β-alanine (TNPh-β-alanine) by amide coupling method. The binding interaction of a monoclonal anti-TNT Ab (M-TNT Ab) with TNPh-β-alanine immobilized thiolate monolayer surface was monitored and evaluated for detection of TNT based on the principle of indirect competitive immunoreaction. Here, the competition between the self-assembled TNT derivative and the TNT in solution for binding with antibody yields in the response signal that is inversely proportional to the concentration of TNT in the linear detection range. With the present immunoassay format, TNT could be detected in the concentration range from 0.008 ng/ml (8 ppt) to 30 ng/ml (30 ppb). The response time for an immunoreaction was 2 min and one immunocycle could be done with in 4 min including surface regeneration. Bound antibodies could be easily eluted from the self-assembled immunosurface at high recoveries (more than 100 cycles) using pepsin solution without any damage to the TNT derivatives immobilized on the surface. The compact self-assembled monolayer was highly stable and prevented the non-specific adsorption of proteins on the surface favoring error free measurement.  相似文献   

12.
On-site colorimetric methods are a valuable, cost-effective tool to assess the nature and extent of contamination in remediated sites and to enable on-site screening for police criminology laboratories. The existing colorimetric method for cyclotrimethylenetrinitramine (RDX) based on a Griess reaction suffers from the non-quantitative reduction to nitrite and from the unstable character of HNO2 in acidic medium. Thus we propose a novel spectrophotometric RDX assay in explosive mixtures and residues, based on (Zn + HCl) reduction of RDX in a microwave oven, followed by neutralization of the reduction products to ammonia and low molecular-weight amines, and Berthelot reaction of these amine-compounds with phenol and hypochlorite in alkaline medium to give an intensely blue indophenol dye absorbing at 631 nm. The molar absorptivity and limit of detection (LOD) for RDX were (1.08 ± 0.04) × 104 L mol−1 cm−1 and 0.18 mg L−1, respectively. Application of the method to synthetic mixture solutions of RDX and trinitrotoluene (TNT) at varying proportions showed that there was minimal interference from TNT (which could be compensated for by dicyclohexylamine colorimetry), since the Berthelot reaction was essentially non-responsive to m-substituted anilines derived from TNT upon (Zn + HCl) reduction. The proposed method was successfully applied to military-purpose explosive mixtures of (RDX + inert matter) such as Comp A5, Comp C4, and Hexal P30, and to (RDX + TNT) mixtures such as Comp B. The molar absorptivity of RDX was much higher than that of either ammonium or nitrate; RDX could be effectively separated from ammonium and nitrate in soil mixtures, based on solubility differences. The Berthelot method for RDX was statistically validated using Comp B mixtures against standard HPLC equipped with a Hypersil C-18 column with (40% MeOH-60% H2O) mobile phase, and against gas chromatography-thermal energy analysis (GC-TEA) system.  相似文献   

13.
A capillary electrophoresis (CE) microchip is utilized for the sensitive separation and detection of three trinitroaromatic explosives: 1,3,5-trinitrotoluene (TNT), 1,3,5-trinitrobenzene (TNB) and 2,4,6-trinitrophenyl-N-methylnitramine (tetryl), in the presence of 10 other explosives and explosive derivatives in nonaqueous electrolyte (acetonitrile/methanol 87.5/12.5 (v/v), 2.5 mM NaOH, 1 mM sodium dodecyl sulfate (SDS)). The chemical reaction of bases, e.g. hydroxide or methoxide ions, with trinitroaromatic compounds forms red colored derivatives that can be easily detected using a green light emitting diode (LED) on the microchip. Two surfactants bearing opposite charge, cetyltrimethylammonium bromide (CTAB) and SDS are compared with respect to their effect on separation times, detection limits and resolving powers for separating these explosives. All microchip separations were achieved in <20 s. In the absence of solid phase extraction (SPE), the detection limits obtained for the trinitroaromatic explosives were as follows: TNB, 60 μg/l; TNT, 160 μg/l and tetryl, 200 μg/l. By coupling the microchip separation with ex situ SPE, the detection limits for detecting these three explosives in seawater were lowered by 240 to more than 1000 times: TNB, 0.25 μg/l; TNT, 0.34 μg/l and tetryl, 0.19 μg/l.  相似文献   

14.
A new optical polymer-based sensor was developed, which is able to recognize amines in organic solvents with high sensitivity. Thin polymer membranes were prepared and investigated, which contain a chromogenic functional dye (reactand) that shows a significant colour change during a reversible chemical reaction with the analyte. For that purpose the azo dye 4-trifluoroacetyl-4′-[N-(methacryloxyethyl)-N-(ethyl)amino]-azobenzene (CR-465) was synthesized, which contains a trifluoroacetyl moiety (receptor for interaction with amines) and in addition, a polymerizable methacrylate group. The methacrylate group links the dye covalently to the polymer matrix and the receptor recognizes the analyte via covalent binding. For immobilisation of the dye cross-linked methacrylate polymers with different composition were used. The highly cross-linked polymer network was stable against most organic solvents and exhibited enhanced stability against mechanical strain compared to plasticized PVC. The sensitivity of the reaction between the analyte and the dye was tailored by the choice of the solvent in which the analysis of the sensor layer was performed, with equilibrium constants for 1-butylamine ranging from 80 to 2000 M−1 in chloroform and DMSO, respectively. In toluene as the solvent, sensor layers typically exhibited equilibrium constants of 100 M−1 for 1-butylamine, 1300 M−1 for 1,4-diaminobutane and 20,000 M−1 for tris-(2-aminoethyl)amine. We have also investigated the cross-linked sensor layers with respect to molecular imprinting and did not find any enhancement in selectivity through imprinting in the presence of different analyte molecules.  相似文献   

15.
A simple fluorescent sensor has been developed for the ratiometric recognition of Mg2+ in semi-aqueous solution at pH 7.0. The sensor, a Schiff base, undergoes Excited State Intramolecular Proton Transfer (ESIPT) to generate a keto tautomer with proficient Mg2+ binding capability. The sensor displays good selectivity over other metal ions including alkali/alkali earth ions and can measure Mg2+ ion concentration between 2.0 and 30.0 μM. The binding stoichiometry was established as 2:1 (host:guest) with an association constant (K21) of (1.4 ± 0.1) × 104 M−2. The sensor could potentially be used to detect conditions such as hypermagnesaemia.  相似文献   

16.
An enzyme-free amperometric method was established for the electrochemical reduction tert-butyl hydroperoxide (TBHP) on the utilization of nano-cobalt phthalocyanine (CoPc) loaded functionalized graphene (FGR) and to create a highly responsive organic peroxide sensor. FGR was synthesized with a simple and fast method of electrolysis with potassium hexafluorophosphate (KPF6) solution as electrolyte under the static current of 0.2 A. In the present work, FGR was dispersed in the solution of CoPc to fabricate chemical modified electrode to detect TBHP. The electro-reduction of TBHP can be catalyzed by FGR–CoPc, which has an excellent electrocatalytical activity due to the synergistic effect of the FGR with CoPc. The sensor can be applied to the quantification of TBHP with a linear range covering from 0.0260 to 4.81 mM, a high sensitivity of 13.64 A M−1, and a low detection limit of 5 μM. This proposed sensor was designed as a simple, robust, and cheap analytical device for the determination of TBHP in body lotion.  相似文献   

17.
A method for micro-contact imprinting CRP has been developed. An analogue, O-(-4-nitrophenylphosphoryl)choline, of the templates natural ligand, phosphorylcholine, was used as the functional monomer. A series of non-imprinted polymers made without template, but with varying cross-linking agents, were made in order to produce a control polymer with minimal non-specific recognition.The affinity of the imprinted polymers for the competing proteins, lysozyme and albumin, was examined. Their respective relative affinities, with 1.04 μg/cm2 of the template protein bound to the imprinted surface as reference, were CRP/albumin = 4.0 and CRP/lysozyme = 346. Measurement of the film thickness showed it to be approximately 10 μm.A competitive binding experiment showed the CRP imprinted material to retain good selectivity for its template when jointly incubated with human serum albumin and CRP. Using the same method we were able to form a micro-contact imprint of human serum albumin which demonstrated relatively good recognition for its own template 2.66 μg/cm2 compared with 0.27 μg/cm2 for CRP.  相似文献   

18.
We report a simple and versatile approach for the conjugation of luminescent CdSe-ZnS core-shell quantum dots (QDs) to proteins through coordination of engineered C-terminal oligohistidine sequences. Several histidine tail containing proteins were self-assembled onto the QD surface using this method. A recombinant antibody specific for the high explosive 2,4,6-trinitrotoluene (TNT) was conjugated to QDs through a carboxy terminal histidine tail and the bioconjugate used to detect TNT by competitive immunoassay. TNT was detected over the range of 10 μg/ml down to 41 ng/ml using the scFv conjugated to QDs. These results open up the possibility to conjugate luminescent QDs to a whole range of proteins to form QD bioconjugates that can be effectively used in bio-oriented applications, such as sensing, imaging, immunoassay and other diagnostics.  相似文献   

19.
An organically modified silicate (ORMOSIL) SPME stationary phase molecularly imprinted with BDE-209 has been successfully fabricated by conventional sol-gel technique from phenyltrimethoxysilane and tetraethoxysilane. The thickness of the ORMOSIL-SPME stationary phase, on fused-silica optical fibres, was measured to be ca. 9.5 μm with a volume of ca. 0.12 μL. Rebinding assays and Scatchard analysis revealed that the imprinted ORMOSIL-SPME stationary phase possessed a binding affinity, KB, of 7.3 ± 1.7 × 1010 M−1 for BDE-209, with a receptor site density, Bmax, of 1.2 × 10−3 pmol per SPME device. Besides its molecular template, the ORMOSIL-SPME stationary phase also showed good affinity (log KB ≥ 9.5) for smaller BDE congeners commonly found in the natural environment. The density of receptor sites within the imprinted matrix for those smaller BDE congeners was even higher than that for BDE-209. This may be attributable to the binding site heterogeneity of the imprinting process that creates deformed binding sites that are suitable for the accommodation of the smaller BDE congeners. Compared to the commercially available polyacrylate and polydimethylsiloxane SPME stationary phases, the imprinted ORMOSIL-SPME devices showed much higher pre-concentration ability towards polybrominated diphenyl ethers (PBDEs), even in direct immersion sampling at room temperature. Coupled with GC-NCI-MS and GC-μECD, the imprinted ORMOSIL-SPME device was able to achieve detection sensitivity of 0.2-3.6 pg mL−1 and 1-8.8 pg mL−1, respectively, for commonly occurring BDE congeners, including medium to high molecular weight PBDEs. The imprinted ORMOSIL-SPME device has been successfully applied to monitor PBDE contents in municipal wastewaters.  相似文献   

20.
Micro-capillaries are finding increasing utility in the development of portable analytical sensors. We present design guidelines for optimizing the collection of free propagating fluorescence for capillary waveguide sensors used in the detection of nucleic acids. A dual function integrated opto/fluid connector is also described. Evanescent wave excitation of the coating layer containing a DNA probe is achieved by using a fiber optic ring arrangement for coupling light directly into the capillary wall. The central part of the connector is used for injecting a DNA or RNA target into the capillary channel. In situ hybridization has been used to detect target molecules at a concentration of 30 pg ml−1. The sensor can be regenerated for repeated detection of DNA or RNA targets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号