首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
E.O. Jorge  M.M. Rocha 《Talanta》2007,72(4):1392-1399
A bismuth film electrode was tested and proposed as an environmentally friendly sensor for the determination of trace levels of Tl(I) in non-deoxygenated solutions. Determination of thallium was made by anodic stripping voltammetry at a rotating-disc bismuth film electrode plated in situ, using acetate buffer as the supporting electrolyte. The stripping step was carried out by a square wave potential-time excitation signal. A univariate optimisation study was performed with several experimental parameters as variables. Under the selected optimised conditions, a linear calibration plot was obtained in the submicromolar concentration range, allowing the electrochemical determination of thallium in trace amounts; the calculated detection limit was 10.8 nM and the relative standard deviation for 15 measurements of 0.1 μM Tl(I) was ±0.2%, for a 120 s accumulation time. Interference of other metals on the response of Tl(I) was investigated. Application to real environmental samples was tested. The bismuth film electrode appears to be a promising tool for electroanalytical purposes, ensuring the use of clean methodology.  相似文献   

2.
《Electroanalysis》2006,18(24):2486-2489
This paper presents the enhanced analysis of copper on a bismuth electrode upon addition of gallium(III). The presence of gallium alleviates the problems of overlapping stripping signals usually observed between copper and bismuth when using the Bismuth Film Electrode. In addition, it has been found that the presence of gallium improves the reproducibility of the bismuth stripping signal. Simultaneous deposition of copper and bismuth at ?1500 mV for 2 minutes in a supporting electrolyte composed of 0.1 M pH 4.75 acetate buffer with 250 μg L?1 gallium yields well resolved copper and bismuth signals when analyzed with square‐wave anodic stripping voltammetry. Simultaneous analysis of copper and lead yielded linear calibration plots in the range 10 to 100 μg L?1 with regression coefficients of 0.997 and 0.994 respectively. The theoretical detection limit for copper was calculated to be 4.98 μg L?1 utilizing a 2 minutes deposition time. The relative standard deviation for a copper concentration of 50 μg L?1 was 1.6% (n=10).  相似文献   

3.
The bismuth film electrode (BiFE), in combination with anodic stripping voltammetry, offers convenient measurement of low concentrations of tin. The procedure involves simultaneous in situ formation of the bismuth film electrode on a glassy carbon substrate electrode, together with electrochemical deposition of tin, in a non-deaerated model solution containing bismuth ions, catechol as complexing agent and the metal analyte, followed by an anodic stripping scan. The BiFE is characterized by an attractive electroanalytical performance, with two distinct voltammetric stripping signals corresponding to tin, accompanied with low background contributions. Several experimental parameters were optimized, such as concentration of bismuth ions and catechol, deposition potential, deposition time and pH of the model solution. In addition, a critical comparison is given with bare glassy carbon and mercury film electrodes, revealing the superior characteristics of BiFE for measurement of tin. BiFE exhibited highly linear behavior in the examined concentration range from 1 to 100 μg L−1 of tin (R2 = 0.997), an LoD of 0.26 μg L−1 tin, and good reproducibility with a calculated R.S.D. of 7.3% for 10 μg L−1 tin (n = 10). As an example, the practical applicability of BiFE was tested with the measurement of tin in a real sample of seawater.  相似文献   

4.
This work exploited a sequential injection lab-on-valve (LOV) system for the determination of cadmium by anodic stripping voltammetry (ASV). A miniaturized electrochemical flow cell (EFC) was fabricated in LOV, in which a nafion coated bismuth film electrode was used as working electrode. The cadmium was electrodeposited on the electrode surface in bismuth solution, and measured with the subsequential stripping scan. Under optimal conditions, the proposed system responded linearly to cadmium concentrations in a range 2.0-100.0 μg L−1. The detection limit of this method was found to be 0.88 μg L−1. By loading a sample volume of 800 μL, a sampling frequency of 22 determinations h−1 was achieved. The repeatability expressed as relative standard derivation (R.S.D.) was 3.65% for 20 μg L−1 cadmium (n = 11). The established method was applied to analysis of trace cadmium in environmental water samples and the spiked recoveries were satisfactory.  相似文献   

5.
Guo Z  Feng F  Hou Y  Jaffrezic-Renault N 《Talanta》2005,65(4):1052-1055
Bismuth film electrode (BiFE) was shown to be an attractive alternative to common mercury film electrode (MFE) for anodic stripping voltammetric measurements. In this study, bismuth film, that was in situ deposited onto glassy carbon electrode, was used to detect zinc content of milkvetch, used in traditional Chinese medicine. Variables affecting the response have been evaluated and optimized. Experimental results showed a high response, with a good linearity (between 0.5 × 10−6 mol L−1 and 3 × 10−6 mol L−1) a good precision (R.S.D. = 3.58%) and a low detection limit (9.6 × 10−9 mol L−1 with a 120 s anodic). The anodic stripping performance makes the bismuth film electrode very desirable for measurements of trace nutritive element zinc in milkvetch and should impart possible restrictions on the use of mercury electrode.  相似文献   

6.
We examined the use of a bismuth-glassy carbon (Bi/C) composite electrode for the determination of trace amounts of lead and cadmium. Incorporated bismuth powder in the composite electrode was electrochemically dissolved in 0.1 M acetate buffer (pH 4.5) where nanosized bismuth particles were deposited on the glassy carbon at the reduction potential. The anodic stripping voltammetry on the Bi/C composite electrode exhibited well-defined, sharp and undistorted peaks with a favorable resolution for lead and cadmium. Comparing a non-oxidized Bi/C composite electrode with an in-situ plated bismuth film electrode, the Bi/C composite electrode exhibited superior performance due to its much larger surface area. The limit of detection was 0.41 μg/L for lead and 0.49 μg/L for cadmium. Based on this study, we are able to conclude that various types of composite electrodes for electroanalytical applications can be developed with a prudent combination of electrode materials.  相似文献   

7.
Lin L  Lawrence NS  Thongngamdee S  Wang J  Lin Y 《Talanta》2005,65(1):144-148
A sensitive adsorptive stripping voltammetric protocol at a bismuth-coated glassy-carbon electrode for trace measurements of chromium (VI) in the presence of diethylenetriammine pentaacetic acid (DTPA) is described. The new protocol is based on accumulation of the Cr-DTPA complex at a preplated bismuth film electrode held at −0.80 V, followed by a negatively-going square-wave voltammetric waveform. Factors influencing the stripping performance including the film preparation, solution pH, DTPA and nitrate concentrations, deposition potential and deposition time, have been optimized. The resulting performance compares well with that observed for analogous measurements at mercury film electrodes. A preconcentration time of 7 min results in a detection limit of 0.3 nM Cr(VI) and after 2 min a relative standard deviation at 20 nM of 5.1% (n = 25). Applicability to river water samples is demonstrated. The attractive behavior of the new “mercury-free” chromium sensor holds great promise for on-site environmental and industrial monitoring of chromium (VI). Preliminary data in this direction using bismuth-coated screen-printed electrodes are encouraging.  相似文献   

8.
For elimination of copper interference in anodic stripping determinations of zinc at mercury and bismuth film electrodes gallium ions are usually added to the supporting electrolyte. In the presented studies novel ex situ formed gallium film electrode was applied for this purpose. The proposed electrode is less toxic than mercury one while the detection limit for zinc was lower than for bismuth film electrode following the same deposition time. The calibration graph for deposition time of 60 s was linear from 5 × 10−8 to 2 × 10−6 mol L−1. The determinations of zinc were carried out from undeaerated solutions. The proposed procedure was applied to zinc determination in certified reference material and tap water sample.  相似文献   

9.
A bismuth bulk electrode (BiBE) has been investigated as an alternative electrode for the anodic stripping voltammetric (ASV) analysis of Pb(II), Cd(II), and Zn(II). The BiBE, which is fabricated in-house, shows results comparable to those of similar analyses at other Bi-based electrodes. Metal accumulation is achieved by holding the electrode potential at −1.4 V (vs. Ag/AgCl) for 180 s followed by a square wave voltammetric stripping scan from −1.4 to −0.35 V. Calibration plots are obtained for all three metals, individually and simultaneously, in the10-100 μg L−1 range, with a detection limit of 93, 54, and 396 ng L−1 for Pb(II), Cd(II), Zn(II), respectively. A slight reduction in slope is observed for Cd(II) and Pb(II) when the three metals are calibrated simultaneously vs. individually. Comparing the sensitivities of the metals when calibrated individually vs. in a mixture reveals that Zn(II) is not affected by stripping in a mixture. However, Pb(II) and Cd(II) have decreasing sensitivities in a mixture. The optimized method has been successfully used to test contaminated river water by standard addition. The results demonstrate the ability of the BiBE as an alternative electrode material in heavy metal analysis.  相似文献   

10.
Yang M  Zhang Z  Hu Z  Li J 《Talanta》2006,69(5):1162-1165
As a representation of metalloproteins, metallothionein (MT), which plays important biological and environmental roles such as in the metabolism and detoxification of some metals, was detected at bismuth film electrode (BiFE) by differential pulse anodic stripping voltammetry (DPASV). In pH 2–5.5, two well-defined anodic peaks were produced and attributed to the Zn2+ and Cd2+ inherent to MT. The calibration plot of DPASV peak currents for Cd2+ inherent to MT versus MT concentrations showed a good linearity with a detection limit of 3.86 × 10−8 mol/L for MT. As a non-toxic excellent electrode material, BiFE shows good performance for detecting MT, and is expected to find further applications in the studies of many other metalloproteins.  相似文献   

11.
Kadara RO  Tothill IE 《Talanta》2005,66(5):1089-1093
As copper(II) is a common ion in a variety of analytical samples, its effect on the stripping response of lead(II) at bismuth film screen-printed carbon electrode (BFSPCE) was investigated. The study was conducted using a screen-printed three-electrode system (working, counter and reference electrodes), with the carbon-working electrode plated in situ with bismuth film. Copper present at significant concentration level in samples was found to affect the sensitivity of the electrode by reducing the constant current stripping chronopotentiometric (CCSCP) response of lead(II). Recovery of the lead stripping response at the BFSPCE in the presence of copper was obtained when 0.1 mM ferricyanide was added to the test solution. The ferricyanide added circumvents the detrimental effect of copper(II) by selectively masking the copper ions by forming a complex. The analytical utility of the procedure is illustrated by the stripping chronopotentiometric determinations of lead(II) in soil extracts.  相似文献   

12.
A cost-effective sequential injection monosegmented flow analysis (SI-MSFA) with anodic stripping voltammetric (ASV) detection has been developed for determination of Cd(II) and Pb(II). The bismuth film working electrode (BiFE) was employed for accumulative preconcentration of the metals by applying a fixed potential of −1.10 V versus Ag/AgCl electrode for 90 s. The SI-MSFA provides a convenient means for preparation of a homogeneous solution zone containing sample in an acetate buffer electrolyte solution and Bi(III) solution for in situ plating of BiFE, ready for ASV measurement at a flow through thin layer electrochemical cell. Under the optimum conditions, linear calibration graphs in range of 10-100 μg L−1 of both Cd(II) and Pb(II) were obtained with detection limits of 1.4 and 6.9 μg L−1 of Cd(II) and Pb(II), respectively. Relative standard deviations were 2.7 and 3.1%, for 11 replicate analyses of 25 μg L−1 Cd(II) and 25 μg L−1 Pb(II), respectively. A sample throughput of 12 h−1 was achieved with low consumption of reagent and sample solutions. The system was successfully applied for analysis of water samples collected from a draining pond of zinc mining, validating by inductively coupled plasma-optical emission spectroscopy (ICP-OES) method.  相似文献   

13.
Segura R  Pradena M  Pinto D  Godoy F  Nagles E  Arancibia V 《Talanta》2011,85(5):2316-2319
A sensitive procedure is presented for the voltammetric determination of nickel. The procedure involves an adsorptive accumulation of nickel 1-nitroso-2-napthol (NN) complex on a bismuth film electrode prepared ex situ by electrodeposition. The most suitable operating conditions and parameters such as pH, ligand concentration (CNN), adsorptive potential (Eads), adsorptive time (tads), scan rate and others were selected and the determination of nickel in aqueous solutions using the standard addition method was possible. The adsorbed Ni-NN complex gives a well defined cathodic stripping peak current at −0.70 V, which was used for the determination of nickel in the concentration range of 10.0-70.0 μg L−1 (pH 7.5; CNN 6.5 μmol L−1; Eads −0.30 V; tads 60 s) with a detection limit of 0.1 μg L−1. The relative standard deviation for a solution containing 10.0 μg L−1 of Ni(II) was 3.5% (n = 4). The proposed method was validated determining Ni(II) in certified reference waste water (SPS-WW1) and Certified Reference Water for Trace Elements (TMDA 51.3) with satisfactory results. Then lake water samples were analyzed.  相似文献   

14.
A new method is presented for the determination of bismuth and copper based on cathodic adsorptive stripping of complexes of Cu(II) and Bi(III) with 2′,3,4′,5,7-pentahydroxyflavone (morin) at a hanging mercury drop electrode (HMDE). The effect of various parameters such as pH, concentration of morin, accumulation potential and accumulation time on the selectivity and sensitivity were studied. The optimum conditions for determination of copper include nitric acid concentration 0.1 M, morin concentration 0.6 μM and accumulation potential of −300 mV. Those conditions for the determination of bismuth include 0.15 M acid concentration, 0.6 μM morin and accumulation potential of −300 mV. Under these optimum conditions and for an accumulation time of 60 s, the measured peak current at −20 to 25 mV is proportional to the concentration of copper and bismuth over the range of 0.2-130 and 5-50 ng ml−1, respectively. At high concentration of morin (35 μM morin) and accumulation potential of −300 mV (versus Ag/AgCl reference electrode) the peak current is proportional only to the concentration of copper and bismuth has no contribution to the current. At low concentration of morin (0.5 μM morin) and accumulation potential of 100 mV (versus Ag/AgCl reference electrode) the peak current is proportional only to the concentration of bismuth. The method was applied to the determination of copper and bismuth in some real and synthetic samples with satisfactory results.  相似文献   

15.
Catalytic adsorptive stripping voltammetry (CAdSV) has been demonstrated at a bismuth film electrode (BiFE) in an injection-moulded electrochemical micro-flow cell. The polystyrene three-electrode flow cell was fabricated with electrodes moulded from a conducting grade of polystyrene containing 40% carbon fibre, one of which was precoated with Ag to enable its use as an on-chip Ag/AgCl reference electrode. CAdSV of Co(II) and Ni(II) in the presence of dimethylglyoxime (DMG) with nitrite employed as the catalyst was performed in order to assess the performance of the flow cell with an in-line plated BiFE. The injection-moulded electrodes were found to be suitable substrates for the formation of BiFEs. Key parameters such as the plating solution matrix, plating flow rate, analysis flow rate, solution composition and square-wave parameters have been characterised and optimal conditions selected for successful and rapid analysis of Co(II) and Ni(II) at the ppb level. The analytical response was linear over the range 1 to 20 ppb and deoxygenation of the sample solution was not required. The successful coupling of a microfluidic flow cell with a BiFE, thereby forming a “mercury-free” AdSV flow analysis sensor, shows promise for industrial and in-the-field applications where inexpensive, compact, and robust instrumentation capable of low-volume analysis is required.  相似文献   

16.
Wang J  Lu D  Thongngamdee S  Lin Y  Sadik OA 《Talanta》2006,69(4):914-917
Bismuth-coated glassy carbon electrodes have been successfully applied for catalytic adsorptive stripping voltammetric measurements of low levels of vanadium(V) in the presence of chloranilic acid (CAA) and bromate ion. The new protocol is based on the accumulation of the vanadium-chloranilic acid complex from an acetate buffer (pH 5.5) solution at a preplated bismuth film electrode held at −0.35 V (versus Ag/AgCl), followed by a square-wave voltammetric scan. Factors influencing the adsorptive stripping performance, including the CAA and bromate concentrations, solution pH, and accumulation potential or time have been optimized. The response compares favorably with that observed at mercury film electrodes. A linear response is observed over the 5-25 μg/L concentration range (2 min accumulation), along with a detection limit of 0.20 μg/L vanadium (10 min accumulation). High stability is indicated from the reproducible response of a 50 μg/L vanadium solution (n = 25; R.S.D. = 3.1%). Applicability to a groundwater sample is illustrated.  相似文献   

17.
In the present work the anodic stripping voltammetric (ASV) methodology using a thin mercury film electrode in situ plated in thiocyanate media was re-assessed in order to allow the simultaneous determination of copper and lead in seawater. Under previously suggested conditions [6], i.e. using a concentration of thiocyanate of 5 mM, the ASV peaks of copper and lead overlapped due to the formation of a stable copper(I)-thiocyanate species, limiting the analytical determinations. Therefore, the best value for the thiocyanate concentration was re-evaluated: for 0.05 mM a trade-off between good resolution of the copper and lead peaks and high reproducibility of the mercury film formation/removing processes was achieved. In this media, the ASV peaks for Pb and Cu occurred, separated by 140 mV. Also, the in situ thin mercury film electrode was produced and removed with good repeatability, which was confirmed by the relative standard deviation values for the ASV determinations: 0.5% for Pb and 2.0% for Cu (10 replicate determinations in a solution with metal concentrations 1.5×10−8 M for lead and 2.2×10−8 M for copper). The optimised methodology was successfully applied to the determination of copper in the presence of lead, in certified seawater (NASS-5).  相似文献   

18.
Differential pulse anodic stripping voltammetry (DPASV) using a Nafion-coated thin mercury film electrode (NCTMFE) was implemented to determine the dissolved copper speciation in saline estuarine waters containing high concentrations of dissolved organic matter (DOM). The study used model ligands and estuarine water from San Francisco Bay, California, USA to demonstrate that the NCTMFE is more effective at distinguishing between electrochemically inert and labile copper species when compared to the conventional thin mercury film electrode (TMFE). Copper titration results verify that the NCTMFE better deals with high concentrations of DOM by creating a size-exclusion barrier that prevents DOM from interacting with the mercury electrode when performing copper speciation measurements. Pseudovoltammograms were used to illustrate that copper complexes found in natural waters were more apt to be electrochemically inert at the NCTMFE relative to the TMFE when subjected to high negative overpotentials. Copper speciation results using the NCTMFE from samples collected in San Francisco Bay estimated that >99.9% of all copper was bound to strong copper-binding ligands. These L1-class ligands exceeded the concentration of total dissolved copper in all samples tested and control the equilibrium of ambient [Cu2+] in the San Francisco Bay estuary.  相似文献   

19.
This paper described a facile and direct electrochemical method for the determination of ultra-trace Cu2+ by employing amino-functionalized mesoporous silica (NH2-MCM-41) as enhanced sensing platform. NH2-MCM-41 was prepared by using a post-grafting process and characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM) and fourier transform infrared (FTIR) spectroscopy. NH2-MCM-41 modified glassy carbon (GC) electrode showed higher sensitivity for anodic stripping voltammetric (ASV) detection of Cu2+ than that of MCM-41 modified one. The high sensitivity was attributed to synergistic effect between MCM-41 and amino-group, in which the high surface area and special mesoporous morphology of MCM-41 can cause strong physical absorption, and amino-groups are able to chelate copper ions. Some important parameters influencing the sensor response were optimized. Under optimum experimental conditions the sensor linearly responded to Cu2+ concentration in the range from 5 to 1000 ng L−1 with a detection limit of 0.9 ng L−1 (S/N = 3). Moreover, the sensor possessed good stability and electrode renewability. In the end, the proposed sensor was applied for determining Cu2+ in real samples and the accuracy of the results were comparable to those obtained by inductively coupled plasma optical emission spectrometry (ICP-OES) method.  相似文献   

20.
在玻碳电极上采用电化学沉积法制备了新型铕离子掺杂普鲁士蓝复合铋膜电极,建立了用示差脉冲阳极溶出法测定环境水样中痕量铟的分析方法。讨论了铟在常规铋膜电极和复合铋膜电极上的溶出性能,对铋膜的厚度、支持电解质、测定底液的pH、富集时间和富集电位等参数进行了优化。在最佳实验条件下,铟的阳极溶出峰电流与其浓度在2~20μg/L和20~100μg/L范围内分别呈良好的线性关系,检测下限为0.15μg/L(S/N=3),相对标准偏差RSD2.0%。该法用于实际水样中痕量铟的测定,样品回收率为97.5%~103%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号