首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 397 毫秒
1.
对扫描电化学显微镜(Scanning Electrochemical Microscope,SECM)的发展及其在界面电化学中的研究应用进行了评述。介绍了SECM的工作原理以及常用的操作模式,并对SECM在液/液界面、固/液界面等方面的应用进行了总结。  相似文献   

2.
Scanning electrochemical microscopy (SECM) was used to monitor in situ hydrogen peroxide (H2O2) produced at a polarized water/1,2-dichloroethane (DCE) interface. The water/DCE interface was formed between a DCE droplet containing decamethylferrocene (DMFc) supported on a solid electrode and an acidic aqueous solution. H2O2 was generated by reducing oxygen with DMFc at the water/DCE interface, and was detected with a SECM tip positioned in the vicinity of the interface using a substrate generation/tip collection mode. This work shows unambiguously how the H2O2 generation depends on the polarization of the liquid/liquid interface, and how proton-coupled electron transfer reactions can be controlled at liquid/liquid interfaces.  相似文献   

3.
The electrochemical behavior of a redox-active, ferrocene-modified ionic liquid (1-ferrocenylmethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide) in acetonitrile and in an ionic liquid electrolyte (1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide) is reported. Reversible electrochemical behavior was observed in each electrolyte with responses typical of those for unmodified ferrocene observed in each medium. In the ionic liquid electrolyte, the diffusion coefficient of the redox-active ionic liquid increased by a factor of 5 upon increasing the temperature from 27 to 90 degrees C. The kinetics of electron transfer across the ionic liquid/electrode interface were studied using cyclic voltammetry, and the standard heterogeneous electron transfer rate constant, k (0) was determined to be 4.25 x 10 (-3) cm s (-1). Scanning electrochemical microscopy was then also used to probe the heterogeneous kinetics at the interface between the ionic liquid and the solid electrode and conventional kinetic SECM theory was used to determine k (0). The k (0) value obtained using SECM was higher than that determined using cyclic voltammetry. These results indicate that SECM is a very useful technique for studying electron transfer dynamics in ionic liquids.  相似文献   

4.
利用薄层法(TLCV)研究了硝基苯(NB)/水(W)界面上二茂铁(Fc)-多巴胺(DA)体系的电子迁移(ET)过程,得到该体系界面电子转移速率常数为1.012cm.s-1.mol-1.L,界面电子转移反应为单电子过程(n=0.89).采用扫描电化学显微镜(SECM)对同一体系进行研究,得到电子迁移速率常数为(1.10±0.2)cm.s-1.mol-1.L,两种方法所得结果吻合,证明了薄层法的可行性.同时,低的反应物浓度比又一次验证了Barker理论.  相似文献   

5.
Molecular partitioning and electron-transfer kinetics have been studied at the ionic liquid/water (IL/water) interface by scanning electrochemical microscopy (SECM). The ionic liquid C8mimC1C1N is immiscible with water and forms a nonpolarizable interface when in contact with it. Partitioning of ferrocene (Fc) across the IL/water interface was studied by SECM and found to be kinetically fast with a partition coefficient CIL/CW of 2400:1. The partition coefficient value was measured by SECM under quasi-steady-state conditions without waiting for complete solute equilibration. To investigate the kinetics of the electron transfer (ET) between aqueous ferricyanide and Fc dissolved in IL, a new approach to the analysis of the SECM current-distance curves was developed to separate the contributions of Fc partitioning and the ET reaction to the tip current. Several combinations of different aqueous and nonaqueous redox species were investigated; however, only the Fc/Fe(CN)63- system behaved according to the Butler-Volmer formalism over the entire accessible potential range.  相似文献   

6.
将含有氧化还原电对的水溶液滴涂在铂盘电极表面, 然后将该电极插入到1,2-二氯乙烷溶液中, 形成稳定的油/水界面. 液滴中的K3Fe(CN)6和K4Fe(CN)6氧化还原电对既可以作为水相中的参比电对参与控制液/液界面上的电势差, 同时又可以作为水相的电子授受体参与界面上的电子转移反应. 结合扫描电化学显微镜电化学系统的特点, 利用其双恒电位仪分别控制界面电势差和现场扫描的优点, 通过扫描电化学显微镜的渐进曲线得到了不同界面电势差控制的电子转移反应速率常数. 实验结果表明, 应用此方法获得的液/液界面可以被外加电位极化, 在一定的电势差范围内, 反应速率常数与界面电势差的关系遵守Butler-Volmer公式.  相似文献   

7.
A carbon ceramic electrode (CCE) modified with the redox probe—decamethylferrocene solution in hydrophobic organic solvent—2-nitrophenyloctyl ether and immersed into an aqueous solution was studied by scanning electrochemical microscopy (SECM). After the electrochemical oxidation of decamethylferrocene, its cations were detected near the electrode surface in the aqueous phase. This indicates that some fraction of the redox-active cations electrochemically produced in the organic phase is transferred across the liquid/liquid interface. They are reduced at the SECM tip and form a solid deposit. The amount of deposited decamethylferrocene was estimated by the anodic reaction at the tip. It is affected by the substrate–tip distance, deposition time, and electrolyte concentration. The SECM images of unmodified and modified CCEs are consistent with their heterogeneous structure.  相似文献   

8.
The first combination of scanning electrochemical microscopy (SECM) with a Langmuir trough for liquid/liquid interfaces is described. The technique has been examined and demonstrated through investigations of the effect of monolayers of l-α-phosphatidylcholine, distearoyl (DSPC) on the kinetics of oxygen transfer from decane to water. The stability of monolayers, formed in this way, on the timescale of SECM measurements has been identified as a function of compression speed and subphase composition. Monolayers were stable over a wide range of pressures and molecular areas, but at high compression a decrease in surface pressure with time was observed. This effect was attributed to desorption of the lipid from the interface. In this situation, it was possible to perform SECM measurements (tip-interface approach curves) rapidly under surface pressure control, without causing significant disturbance to the monolayer. DSPC had no detectable effect on the oxygen transfer kinetics when the monolayer was in the liquid-expanded phase, but in the liquid-condensed phase a significant decrease in the rate of oxygen transfer was observed.  相似文献   

9.
The electrochemical behaviour of ferrocenemethanol (FcMeOH) has been studied in a range of room-temperature ionic liquids (RTILs) using cyclic voltammetry, chronoamperomery and scanning electrochemical microscopy (SECM). The diffusion coefficient of FcMeOH, measured using chronoamperometry, decreased with increasing RTIL viscosity. Analysis of the mass transport properties of the RTILs revealed that the Stokes-Einstein equation did not apply to our data. The "correlation length" was estimated from diffusion coefficient data and corresponded well to the average size of holes (voids) in the liquid, suggesting that a model in which the diffusing species jumps between holes in the liquid is appropriate in these liquids. Cyclic voltammetry at ultramicroelectrodes demonstrated that the ability to record steady-state voltammograms during ferrocenemethanol oxidation depended on the voltammetric scan rate, the electrode dimensions and the RTIL viscosity. Similarly, the ability to record steady-state SECM feedback approach curves depended on the RTIL viscosity, the SECM tip radius and the tip approach speed. Using 1.3 μm Pt SECM tips, steady-state SECM feedback approach curves were obtained in RTILs, provided that the tip approach speed was low enough to maintain steady-state diffusion at the SECM tip. In the case where tip-induced convection contributed significantly to the SECM tip current, this effect could be accounted for theoretically using mass transport equations that include diffusive and convective terms. Finally, the rate of heterogeneous electron transfer across the electrode/RTIL interface during ferrocenemethanol oxidation was estimated using SECM, and k(0) was at least 0.1 cm s(-1) in one of the least viscous RTILs studied.  相似文献   

10.
Solutions of monodisperse monolayer-protected clusters (MPCs) of gold can be used as multivalent redox mediators in electrochemical experiments due to their quantized double-layer charging properties. We demonstrate their use in scanning electrochemical microscopy (SECM) experiments wherein the species of interest (up to 2-electron reduction or 4-electron oxidation from the native charge-state of the MPCs) is generated at the tip electrode, providing a simple means to adjust the driving force of the electron transfer (ET). Approach curves to perfectly insulating (Teflon) and conducting (Pt) substrates are obtained. Subsequently, heterogeneous ET between MPCs in 1,2-dichloroethane and an aqueous redox couple (Ce(IV), Fe(CN)63-/4-, Ru(NH3)63+, and Ru(CN)64-) is probed with both feedback and potentiometric mode of SECM operation. Depending on the charge-state of the MPCs, they can accept/donate charge heterogeneously at the liquid-liquid interface. However, this reaction is very slow in contrast to ET involving MPCs at the metal-electrolyte interface.  相似文献   

11.
<正>The oxidation of hydroquinone(QH_2) was investigated for the first time at liquid/liquid(L/L) interface by scanning electrochemical microscopy(SECM).In this study,electron transfer(ET) from QH_2 in aqueous to ferrocene(Fc) in nitrobenzene (NB) was probed.The apparent heterogeneous rate constants for ET reactions were obtained by fitting the experimental approach curves to the theoretical values.The results showed that the rate constants for oxidation reaction of QH_2 were sensitive to the changes of the driving force,which increased as the driving force increased.In addition,factors that would affect ET of QH_2 were studied.Experimental results indicated ion situation around QH_2 molecule could change the magnitude of the rate constants because the capability of oxidation of QH_2 would be affected by them.  相似文献   

12.
The focus of this review is on applications of scanning electrochemical microscopy (SECM) to studies of heterogeneous chemical processes and high resolution characterization of the solid/liquid and liquid/liquid interfaces. Recent advances in SECM imaging of surface topography and chemical reactivity are also surveyed.  相似文献   

13.
将有机相和水相分别灌入双通道玻璃微米管θ管中的一个管中,利用θ管表面的亲水特征,在灌有有机相的微米管口附近形成微-液/液界面.利用循环伏安法研究了电荷在这种微-液/液界面上的转移反应,包括简单离子(四甲基铵离子TMA+)转移、加速离子转移(DB18C6加速K+离子)和电子转移(二茂铁/铁氰化钾+亚铁氰化钾体系)反应过程.结果表明,这种双通道微米管所得到的微-液/液界面具有不对称扩散场的特性.此装置是目前最简单的可用于研究液/液界面上的电荷转移反应的装置之一,即所谓的可进行"无溶液"液/液界面电化学及电分析化学研究的装置.  相似文献   

14.
Abstrac  Using liquid gallium electrodes it was proved that electrodiffusion method is a convenient tool for measuring the mass transfer at liquid/liquid interface. It was shown that mass transfer coefficient at the liquid/liquid interface at high Reynolds numbers is much more important in comparison to that measured at the solid/liquid interface at identical geometrical and hydrodynamic conditions. In experiments with the flow induced by the rotation of the upper disc (working ring electrode is placed on the bottom of the immobile disc), the Sherwood number increases in turbulent regime as Sh ∼ Re1.8 at the liquid/liquid interface, contrary to the traditional law Sh ∼ Re0.9 at the solid/liquid interface. In laminar regime the Sherwood number at the liquid/liquid and at the solid/liquid interfaces follows the traditional dependence Sh ∼ Re0.5. It was shown that sharp increasing of the mass transfer coefficient at the liquid/liquid interface is closely related with the appearance of the surface waves, the phenomenon is identified as a Kelvin-Helmholtz type instability. Published in Russian in Elektrokhimiya, 2008, Vol. 44, No. 4, pp. 482–490. The text was submitted by the authors in English.  相似文献   

15.
薄层循环伏安法是研究液/液界面电荷转移的一种新方法,具有简单、快速、易操作的优点。文章回顾了液/液界面电化学的发展历史,介绍了薄层法的实验原理,对其在电化学中的应用和研究进展进行了评述,总结了界面驱动力与电子转移速率的关系。  相似文献   

16.
《Electroanalysis》2005,17(11):953-958
An electron transfer reaction between ascorbic acid (H2A) in an aqueous solution and oxidizing agent in an organic solution immiscible with water has been studied by thin‐layer cyclic voltammetry (TLCV) for charge transfer at the interface between two immiscible electrolyte solutions (ITIES). As an antioxidant, H2A provide electrons through the aqueous/organic interface to reduce Fc+ and the procedure has been proved to be a one electron process again. In this work, the first combination of TLCV and scanning electrochemical microscopy (SECM) was achieved and showed a reasonable agreement between the results from the two different approaches. Otherwise, lower concentration ratios Kr of aqueous to organic reactants was adopted, which is given as evidence to the proposed procedure of Barker.  相似文献   

17.
The power density of lithium-ion batteries requires the fast transfer of ions between the electrode and electrolyte. The achievable power density is directly related to the spontaneous equilibrium exchange of charged lithium ions across the electrolyte/electrode interface. Direct and unique characterization of this charge-transfer process is very difficult if not impossible, and consequently little is known about the solid/liquid ion transfer in lithium-ion-battery materials. Herein we report the direct observation by solid-state NMR spectroscopy of continuous lithium-ion exchange between the promising nanosized anatase TiO(2) electrode material and the electrolyte. Our results reveal that the energy barrier to charge transfer across the electrode/electrolyte interface is equal to or greater than the barrier to lithium-ion diffusion through the solid anatase matrix. The composition of the electrolyte and in turn the solid/electrolyte interface (SEI) has a significant effect on the electrolyte/electrode lithium-ion exchange; this suggests potential improvements in the power of batteries by optimizing the electrolyte composition.  相似文献   

18.
The modification of the liquid/liquid interface with solid phases is discussed in this article. Modified interfaces can be formed with molecular assemblies, but here attention is focussed on solid materials such as mesoscopic particles, or microporous and mesoporous membranes. Charge transfer across the modified liquid/liquid interface is considered in particular. The most obvious consequence of the introduction of such modifying components is their effect on the transport to, and the transfer of material across, the liquid/liquid interface, as measured voltammetrically for example. One particularly interesting reaction is interfacial metal deposition, which can also be studied under electrochemical control: the initial formation of metal nuclei at the interface transforms it from the bare, pristine state to a modified state with very different reactivity. Deposition at interfaces between liquids is compared and contrasted with the cases of metal deposition in bulk solution and conventional heterogeneous deposition on conducting solid surfaces. Comparison is also made with work on the assembly of pre-formed micron and nanometre scale solids at the liquid/liquid interface.  相似文献   

19.
钴氰化钠与铁氰化钠结构类似,而其在固/液界面上的电子转移特性却并不显著. 使用扫描电化学显微镜(SECM)构建了fL~pL体积的电化学微体系. 在微体系中溶剂蒸发,电解质则会浓缩结晶. 当电活性物质与支持电解质的晶格参数匹配时,二者可发生共结晶形成固体溶液. 本文采用该方法制得钴氰化钠/氯化钠固体溶液微晶体,结合微加工技术构建了固体电极/固体溶液界面,该钴氰化钠在固体溶液中即有很好的电子转移特性.  相似文献   

20.
《Colloids and Surfaces》1988,29(3):293-304
Donor-acceptor interactions between a solid surface and an organic liquid lead to the creation of surface charge and counterions in the liquid. In simple systems, the energy levels of the solid and the liquid determine the direction of electron transfer and the sign of the surface charge. Our experimental results show that the surface charge and counterions can be formed either by a direct electron transfer as in the case of the metal-organic liquid or by an ion transfer due to the heterolysis of the donor-acceptor complex formed at the surface. The latter case includes many inorganic solid materials. Inorganic oxides bearing hydroxyl groups acquire their charge by a proton transfer mechanism. The proton affinity of the liquid was found to correlate with the sign of the surface charge on various inorganic solids. This result was consistent for both aprotic donor and amphoteric liquids. The various mechanisms leading to the formation of the surface charge in organic liquids are reviewed and a systematic approach to the phenomenon is provided.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号