首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Dispersive liquid-liquid microextraction (DLLME) coupled with high-performance liquid chromatography-variable wavelength detector (HPLC-VWD) was developed for extraction and determination of chloramphenicol (CAP) and thiamphenicol (THA) in honey. In this extraction method, 1.0 mL of acetonitrile (as dispersive solvent) containing 30 μL 1,1,2,2-tetrachloroethane (as extraction solution) was rapidly injected by syringe into a 5.00-mL water sample containing the analytes, thereby forming a cloudy solution. After extraction, phase separation was performed by centrifugation and the enriched analytes in the sedimented phase were determined by HPLC-VWD. Some important parameters, such as the nature and volume of extraction solvent and dispersive solvent, extraction time, sample solution pH, sample volume and salt effect were investigated and optimized. Under the optimum extraction condition, the method yields a linear calibration curve in the concentration range from 3 to 2000 μg kg−1 for target analytes. The enrichment factors for CAP and THA were 68.2 and 87.9, and the limits of detection (S/N = 3) were 0.6 and 0.1 μg kg−1, respectively. The relative standard deviations (RSDs) for the extraction of 10 μg kg−1 of CAP and THA were 4.3% and 6.2% (n = 6). The main advantages of DLLME-HPLC method are simplicity of operation, rapidity, low cost, high enrichment factor, high recovery, good repeatability and extraction solvent volume at microliter level. Honey samples were successfully analyzed using the proposed method.  相似文献   

2.
Fabric phase sorptive extraction (FPSE) is a new, yet very promising member of the sorbent-based sorptive microextraction family. It has simultaneously improved both the extraction sensitivity and the speed of the extraction by incorporating high volume of sol–gel hybrid inorganic–organic sorbents into permeable fabric substrates. The advantages of FPSE have been investigated for the determination of four non-steroidal anti-inflammatory drugs, ibuprofen, naproxen, ketoprofen and diclofenac, in environmental water samples in combination with gas chromatography–mass spectrometry. Initially, the significance of several parameters affecting FPSE: sorbent chemistry, matrix pH and ionic strength were investigated using a mixed level factorial design (31 × 22). Then, other important parameters e.g., sample volume, extraction kinetics, desorption time and volume were also carefully studied and optimized. Due to the high sorbent loading on the FPSE substrate in the form of ultra-thin coating and the open geometry of the microextraction device, higher mass transfer of the target analytes occurs at a faster rate, leading to high enrichment factors in a relatively short period of time (equilibrium times: 45–100 min). Under optimal operational conditions, the limits of detection (S/N = 3) were found to be in the range of 0.8 ng L−1 to 5 ng L−1. The enrichment factors ranged from 162 to 418 with absolute extraction efficiencies varied from 27 to 70%, and a good trueness (82–116% relative recoveries) indicating that the proposed method can be readily deployed to routine environmental pollution monitoring. The proposed method was successfully applied to the analysis of target analytes in two influent and effluent samples from a wastewater treatment plant and two river water samples in Spain.  相似文献   

3.
Zhang Z  Zhang C  Su X  Ma M  Chen B  Yao S 《Analytica chimica acta》2008,621(2):185-192
A new method was developed for the analysis of illicit drugs in human urine by coupling carrier-mediated liquid phase microextraction (LPME) to high performance liquid chromatography (HPLC). By adding an appropriate carrier in organic phase, simultaneous extraction and enrichment of hydrophilic (morphine and ephedrine) and hydrophobic (pethidine) drugs were achieved. Effects of the types of organic solvents and carriers, the carrier concentration in the organic phase, the HCl concentration in the acceptor solution, the stirring rate, and the extraction time on the enrichment factor of analytes were investigated. Under the optimal experimental conditions, high enrichment factors (202-515) were obtained. The linear detection ranges were 0.1-10 mg L−1 for the studied drugs. The limits of detection (LOD) at signal-to-noise ratio of 3 were 0.05 mg L−1 for both morphine and ephedrine, and 0.02 mg L−1 for pethidine. This method was successfully applied to analysis of ephedrine in real urine specimens, revealing that the determination of illicit drugs in urine was feasible.  相似文献   

4.
A headspace solid-phase dynamic extraction (HS-SPDE) technique was developed by the use of polypyrrole (PPy) sorbent, electropolymerized inside the surface of a needle, as a possible alternative to solid-phase microextraction (SPME). Thermal desorption was subsequently, employed to transfer the extracted analytes into the injection port of a gas chromatography-mass spectrometry (GC-MS). The PPy sorbent including polypyrrole-dodecyl sulfate (PPy-DS) was deposited on the interior surface of a stainless steel needle from the corresponding aqueous electrolyte by applying a constant deposition potential. The homogeneity and the porous surface structure of the coating were examined using the scanning electron microscopy (SEM).The developed method was applied to the trace level extraction of some polycyclic aromatic hydrocarbons (PAHs) from aqueous sample. In order to enhance the extraction efficiency and increase the partition coefficient of analytes, the stainless steel needle was cooled at 5 °C, while the sample solution was kept at 80 °C. Optimization of influential experimental conditions including the voltage of power supply, the time of PPy electrodeposition, the extraction temperature, the ionic strength and the extraction time were also investigated. The detection limits of the method under optimized conditions were in the range of 0.002-0.01 ng mL−1. The relative standard deviations (R.S.D.) at a concentration level of 0.1 ng mL−1 were obtained between 7.54 and 11.4% (n = 6). The calibration curves of PAHs showed linearity in the range of 0.01-10 ng mL−1. The proposed method was successfully applied to the extraction of some selected PAHs from real-life water samples and the relative recoveries were higher than 90% for all the analytes.  相似文献   

5.
The directly suspended droplet microextraction (DSDME) technique coupled with the capillary gas chromatography-flame ionization detector (GC-FID) was used to determine BTEX compounds in aqueous samples. The effective parameters such as organic solvent, extraction time, microdroplet volume, salt effect and stirring speed were optimized. The performance of the proposed technique was evaluated for the determination of BTEX compounds in natural water samples. Under the optimal conditions the enrichment factors ranged from 142.68 to 312.13, linear range; 0.01-20 μg mL−1, limits of detection; 0.8-7 ng mL−1 for most analytes. Relative standard deviations for 0.2 μg mL−1 of BTEX in water were in the range 1.81-2.47% (n = 5). The relative recoveries of BTEX from surface water at spiking level of 0.2 μg mL−1 were in the range of 89.87-98.62%.  相似文献   

6.
A new, simple, fast and high sensitive analytical method based on dispersive liquid-liquid microextraction (DLLME) followed by gas chromatography-mass spectrometry (GC-MS) for the simultaneous determination of nitro musks in surface water and wastewater samples is presented. Different parameters, such as the nature and volume of both the extraction and disperser solvents and the ionic strength and pH of the aqueous donor phase, were optimized. Under the selected conditions (injection of a mixture of 1 mL of acetone as disperser solvent and 50 μL of chloroform as extraction solvent, no salt addition and no pH adjustment) the figures of merit of the proposed DLLME-GC-MS method were evaluated. High enrichment factors, ranging between 230 and 314 depending on the target analyte, were achieved, which redound to limits of detection in the ng L−1 range (i.e., 4-33 ng L−1). The relative standard deviation (RSD) was below 5% for all the target analytes. Finally, the recoveries obtained for different water samples of diverse origin (sea, river, irrigation channel and water treatment plant) ranged between 87 and 116%, thus showing no matrix effects.  相似文献   

7.
A novel microextraction method termed ionic liquid dispersive liquid–liquid microextraction (IL-DLLME) combining high-performance liquid chromatography with diode array detection (HPLC-DAD) was developed for the determination of insecticides in water samples. Four heterocyclic insecticides (fipronil, chlorfenapyr, buprofezin, and hexythiazox) were selected as the model compounds for validating this new method. This technique combines extraction and concentration of the analytes into one step, and the ionic liquid was used instead of a volatile organic solvent as the extraction solvent. Several important parameters influencing the IL-DLLME extraction efficiency such as the volume of extraction solvent, the type and volume of disperser solvent, extraction time, centrifugation time, salt effect as well as acid addition were investigated. Under the optimized conditions, good enrichment factors (209–276) and accepted recoveries (79–110%) were obtained for the extraction of the target analytes in water samples. The calibration curves were linear with correlation coefficient ranged from 0.9947 to 0.9973 in the concentration level of 2–100 μg/L, and the relative standard deviations (RSDs, n = 5) were 4.5–10.7%. The limits of detection for the four insecticides were 0.53–1.28 μg/L at a signal-to-noise ratio (S/N) of 3.  相似文献   

8.
Farajzadeh MA  Djozan D  Khorram P 《Talanta》2011,85(2):1135-1142
A novel sample preparation technique, the microextraction method based on a dynamic single drop in a narrow-bore tube, coupled with gas chromatography-flame ionization detection (GC-FID) is presented in this paper. The most important features of this method are simplicity and high enrichment factors. In this method, a microdrop of an extraction solvent assisted by an air bubble was repeatedly passed through a narrow-bore closed end tube containing aqueous sample. It has been successfully used for the analysis of some pesticides as model analytes in aqueous samples. Parameters affecting the method's performance such as selection of extraction solvent type and volume, number of extractions, volume of aqueous sample (tube length), and salt effect were studied and optimized. Under the optimal conditions, the enrichment factors (EFs) for triazole pesticides were in the range of 141-214 and the limits of detection (LODs) were between 2 and 112 μg L−1. The relative standard deviations (C = 1000 μg L−1, n = 6) were obtained in the range of 2.9-4.5%. The recoveries obtained for the spiked well water and grape juice samples were between 71 and 106%. Low cost, relatively short sample preparation time and less solvent consumption are other advantages of the proposed method.  相似文献   

9.
A new dispersive liquid–liquid microextraction method has been established for extraction of two antioxidants, Irganox 1010 and Irgafos 168, from polyolefins. The extracts were analyzed by liquid chromatography. Carbon tetrachloride at microliter levels and acetonitrile at milliliter levels were used as extraction and dispersive solvents, respectively. Central-composite design and response-surface methodology were used as experimental strategies for modeling and optimization. The effects of experimental conditions on extraction were investigated by modeling extraction recovery as the response. The experimental design was performed at five levels of the operating conditions. Nearly the same results for optimization were obtained by using the one-variable-at-a-time and central-composite-design methods: sample size 5–10 mg, dispersive solvent acetonitrile (2 mL), extraction solvent carbon tetrachloride (200 μL); extraction temperature 100 °C, and extraction time 3 h. Under the optimum conditions the calibration plots were linear over the range 50–2,000 μg L?1 in solution. The relative standard deviation of the method for six replicate experiments was 7.0 and 4.9% for Irganox 1010 and Irgafos 168, respectively.  相似文献   

10.
Zhang PP  Shi ZG  Feng YQ 《Talanta》2011,85(5):2581-2586
In this work, a two-step liquid-phase microextraction (LPME) method was presented for the extraction of phenols in environmental water samples. Firstly, the polar phenol in water samples (donor phase) was transferred to 1-octanol (extraction mesophase) by magnetic stirring-assisted LPME. Subsequently, target analytes in the 1-octanol was back extracted into 0.1 mol/L sodium hydroxide solution (acceptor phase) by vortex-assisted LPME. By combination of the two-step LPME, the enrichment factors were multiplied. The main features of this two-step LPME for phenols lie in the following aspects. Firstly, the extraction can be accomplished within relatively short time (ca. 20 min). Secondly, it was compatible with HPLC analysis, avoiding derivatization step that is generally necessary for GC analysis. Thirdly, high enrichment factors (296-954 fold) could be obtained for these analytes. Under the optimized conditions, the linearities were 10-1000, 1-500, 1-500, 5-500 and 1-500 ng/mL for different phenols with all regression coefficients higher than 0.9985. The limits of detection were in the range from 0.3 to 3.0 ng/mL for these analytes. Intra-and inter-day relative standard deviations were below 7.6%, indicating a good precision of the proposed method.  相似文献   

11.
A rapid and simple dispersive liquid-liquid microextraction (DLLME) has been developed to preconcentrate eighteen organochlorine pesticides (OCPs) from water samples prior to analysis by gas chromatography-mass spectrometry (GC-MS). The studied variables were extraction solvent type and volume, disperser solvent type and volume, aqueous sample volume and temperature. The optimum experimental conditions of the proposed DLLME method were: a mixture of 10 μL tetrachloroethylene (extraction solvent) and 1 mL acetone (disperser solvent) exposed for 30 s to 10 mL of the aqueous sample at room temperature (20 °C). Centrifugation of cloudy solution was carried out at 2300 rpm for 3 min to allow phases separation. Finally, 2 μL of extractant was recovered and injected into the GC-MS instrument. Under the optimum conditions, the enrichment factors ranged between 46 and 316. The calculated calibration curves gave a high-level linearity for all target analytes with correlation coefficients ranging between 0.9967 and 0.9999. The repeatability of the proposed method, expressed as relative standard deviation, varied between 5% and 15% (n = 8), and the detection limits were in the range of 1-25 ng L−1. The LOD values obtained are able to detect these OCPs in aqueous matrices as required by EPA methods 525.2 and 625. Analysis of spiked real water samples revealed that the matrix had no effect on extraction for river, surface and tap waters; however, urban wastewater sample shown a little effect for five out of eighteen analytes.  相似文献   

12.
A simple solvent microextraction method termed vortex-assisted liquid–liquid microextraction (VALLME) coupled with gas chromatography micro electron-capture detector (GC-μECD) has been developed and used for the pesticide residue analysis in water samples. In the VALLME method, aliquots of 30 μL toluene used as extraction solvent were directly injected into a 25 mL volumetric flask containing the water sample. The extraction solvent was dispersed into the water phase under vigorously shaking with the vortex. The parameters affecting the extraction efficiency of the proposed VALLME such as extraction solvent, vortex time, volumes of extraction solvent and salt addition were investigated. Under the optimum condition, enrichment factors (EFs) in a range of 835–1115 and limits of detection below 0.010 μg L−1 were obtained for the determination of target pesticides in water. The calculated calibration curves provide high levels of linearity yielding correlation coefficients (r2) greater than 0.9958 with the concentration level ranged from 0.05 to 2.5 μg L−1. Finally, the proposed method has been successfully applied to the determination of pesticides from real water samples and acceptable recoveries over the range of 72–106.3% were obtained.  相似文献   

13.
This work describes optimization of headspace single drop micro-extraction for extraction of five organophosphorus pesticides; thionazin, sulfotep, dimethoate, disulfoton and parathion in soil. Ultrasound has also been used successfully to improve and accelerate the extraction of the analytes from the sample. The optimized extraction performance was obtained when the experimental parameters were set as follows; 3.0 μL of octanol as extraction solvent, high ionic strength (20% sodium chloride), 1:1 (w/v) sample dilution with water, extraction temperature at 60 °C for 30 min; applying ultrasound and without any pH adjustment. The optimized method was linear over the calibration range (5–200 and 10–300 for different analytes) with limits of detection of 0.1–2.0 ng g−1. The enrichment factor for OPPs was 1.4–12.7 and the method was also reproducible with the relative standard deviations (RSD%) of 2.1–6.9%.  相似文献   

14.
A simple and efficient method, ionic liquid-based dispersive liquid-liquid microextraction combined with high-performance liquid chromatography-ultraviolet detection (HPLC-UV), has been applied for the extraction and determination of some antioxidants (Irganox 1010, Irganox 1076 and Irgafos 168) in water samples. The microextraction efficiency factors were investigated and optimized: 1-hexyl-3-methylimidazolium hexafluorophosphate [C(6)MIM][PF(6)] (0.06 g) as extracting solvent, methanol (0.5 mL) as disperser solvent without salt addition. Under the selected conditions, enrichment factors up to 48-fold, limits of detection (LODs) of 5.0-10.0 ng/mL and dynamic linear ranges of 25-1500 ng/mL were obtained. A reasonable repeatability (RSD≤11.8%, n=5) with satisfactory linearity (r(2)≥0.9954) of the results illustrated a good performance of the presented method. The accuracy of the method was tested by the relative recovery experiments on spiked samples, with results ranging from 85 to 118%. Finally, the method was successfully applied for determination of the analytes in several real water samples.  相似文献   

15.
The convenient fabrications of titania and zirconia hollow fiber with three-dimensional porous structure using polypropylene hollow fibers as templates were developed. And an analytical method based on enrichment and extraction of analytes in the water sample, hollow fiber sorptive microextraction in combined with gas chromatography has been developed for the rapid analysis of N,N-dimethylacetamide (DMA) in the environmental samples. The results showed that zirconia hollow fiber gave higher extraction performance of DMA than that of titania hollow fiber. The method validations, including linearity, limit of detection, limit of qualification, precision, and repeatability were investigated. Linearity for six-point calibration curve was excellent with zirconia hollow fiber having r2 value greater than 0.9993 at the linearity range of 0.001-1.0 mg mL−1. In addition, it seems that hollow fiber sorptive extraction is a promising technique for the enrichment and purification of analytes extracted directly from liquid samples without any other pretreatment.  相似文献   

16.
A simple, sensitive and selective method for the simultaneous determination of five ultraviolet (UV) filters: benzophenone, octyl salicylate, homosalate, 3-(4-methylbenzylidene) camphor, 2-hydroxy-4-methoxybenzophenone in aqueous samples was developed. The analytes were extracted by plunger-in-needle solid-phase microextraction with graphene as sorbent, then silylated on-fiber with N-methyl-N-(trimethylsilyl)trifluoroacetamide, and analyzed by gas chromatography–mass spectrometry. Factors affecting the performance of extraction and derivatization steps were thoroughly evaluated. For the optimization of extraction conditions, six relevant factors (parameters) were investigated, including sample pH, salt concentration, extraction time, extraction temperature, stirring speed and sampling mode. In the first stage, a two-level orthogonal array design OA8 (27) matrix was employed to study the effect of six factors. Based on the results of the first stage, three factors were selected for further optimization with a univariant approach during the second stage. Under the final optimized conditions, the method limits of detection for the five UV filters were determined to be in the range of 0.5 and 6.8 ng L−1 (at a signal/noise ratio of 3) and the precision (% relative standard deviation, n = 5) was 0.8–5.6% at a concentration level of 1 μg L−1. The linearities for different analytes were 10–10,000 or 1–5000 ng L−1. The coefficients of determination for the calibration curves were all greater than 0.994. Finally, the proposed method was successfully applied to the extraction and determination of the UV filters in river water samples.  相似文献   

17.
A novel solid phase microextraction (SPME) fiber was fabricated by electrospinning method in which a polymeric solution was converted to nanofibers using high voltages. A thin stainless steel wire was coated by the network of polymeric nanofibers. The polymeric nanofiber coating on the wire was mechanically stable due to the fine and continuous nanofibers formation around the wire with a three dimensional structure. Polyamide (nylon 6), due to its suitable characteristics was used to prepare the unbreakable SPME nanofiber. The scanning electron microscopy (SEM) images of this new coating showed a diameter range of 100–200 nm for polyamide nanofibers with a homogeneous and porous surface structure. The extraction efficiency of new coating was investigated for headspace solid-phase microextraction (HS-SPME) of some environmentally important chlorophenols from aqueous samples followed by gas chromatography–mass spectrometry (GC–MS) analysis. Effect of different parameters influencing the extraction efficiency including extraction temperature, extraction time, ionic strength and polyamide amount were investigated and optimized. In order to improve the chromatographic behavior of phenolic compounds, all the analytes were derivatized prior to the extraction process using basic acetic anhydride. The detection limits of the method under optimized conditions were in the range of 2–10 ng L−1. The relative standard deviations (RSD) (n = 3) at the concentration level of 1.7–6.7 ng mL−1 were obtained between 1 and 7.4%. The calibration curves of chlorophenols showed linearity in the range of 27–1330 ng L−1 for phenol and monochlorophenols and 7–1000 ng L−1 for dichloro and trichlorophenols. Also, the proposed method was successfully applied to the extraction of phenol and chlorophenols from real water samples and relative recoveries were between 84 and 98% for all the selected analytes except for 2,4,6 tricholophenol which was between 72 and 74%.  相似文献   

18.
The paper described a new ionic liquid, 1,3-dibutylimidazolium hexafluorophosphate, as extraction solvent for extraction and preconcentration of organophosphorus pesticides (fenitrothion, parathion, fenthion and phoxim) from water and fruit samples by dispersive liquid–liquid microextraction combined with high-performance liquid chromatography. The effects of experimental parameters, such as extraction solvent volume, disperser solvent and its volume, extraction and centrifugal time, sample pH, extraction temperature and salt addition, on the extraction efficiency were investigated. An extraction recovery of over 75% and enrichment factor of over 300-fold were obtained under the optimum conditions. The linearity relationship was also observed in the range of 5–1000 μg L−1 with the correlation coefficients (r2) ranging from 0.9988 to 0.9999. Limits of detection were 0.01–0.05 μg L−1 for four analytes. The relative standard deviations at spiking three different concentration levels of 20, 100 and 500 μg L−1 varied from 1.3–2.7, 1.4–1.9 and 1.1–1.7% (n = 7), respectively. Three real samples including tap water, Yellow River water and pear spiked at three concentration levels were analyzed and yielded recoveries ranging from 92.7–109.1, 95.0–108.2 and 91.2–108.1%, respectively.  相似文献   

19.
In this paper multivariate response surface methodology (RSM) has been used for the optimization of hydrodistillation-headspace solvent microextraction (HD-HSME) of thymol and carvacrol in Thymus transcaspicus. Quantitative determination of compounds of interest was performed simultaneously using gas chromatography coupled with flame ionization detector (GC-FID). Parameters affecting the extraction efficiency were assessed and the optimized values were 5 min, 2 μL and 3 min for the extraction time, micro-drop volume and cooling time after extraction, respectively. The amounts of analyte extracted increased with plant weight. The calibration curves were linear in the ranges of 6.25-81.25 and 1.25-87.50 mg L−1 for thymol and carvacrol, respectively. Limit of detection (LOD) for thymol and carvacrol was 1.87 and 0.23 mg L−1, respectively. Within-day and between-day precisions for both analytes were calculated in three different concentrations and recoveries obtained were in the range of 89-101% and 95-116% for thymol and carvacrol, respectively.  相似文献   

20.
A procedure involving the simultaneous performance of liquid–liquid microextraction and polypropylene microporous membrane solid-phase extraction was carried out. The applicability of the proposed procedure was evaluated through extraction of several organochlorine pesticides from river water, tomato and strawberry samples. The parameters affecting the extraction efficiency were optimized by multivariable designs, and the analytical features were estimated. Under optimized conditions, analytes were concentrated onto 1.5 cm long microporous membranes placed directly into the sample containing 15 mL of water with 20 μL of 1-octanol. The best extraction conditions were achieved at 59 °C, with 60 min of extraction time and 2.91 g of sodium chloride. The desorption of the analytes was carried out using 30 μL of a mixture of toluene and hexane in the proportion of 60:40% (v/v) for 10 min. Detection limits in the range of 2.7–20.0 ng L−1, 0.50–1.15 μg kg−1, and 1.53–12.77 μg kg−1 were obtained for river water, strawberry and tomato samples, respectively. Good repeatability was obtained for all three sample types. The results suggest that the proposed procedure represents a very simple and low-cost microextraction alternative rendering adequate limits of quantification for the determination of organochlorine pesticides in environmental and food samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号