首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An amperometric nicotine inhibition biosensor has been substantially simplified and used for determination of nicotine in tobacco sample. Besides the use of single enzyme choline oxidase to replace bienzyme, the use of 1,4-benzoquinone as an electron mediator makes it possible to avoid the use of oxygen or hydrogen peroxide sensor as the internal transducer. Choline oxidase was immobilized on the carbon paste electrode through cross-linking with bovine serum albumin (BSA) by glutaraldehyde. In the presence of choline oxidase and its endogenous cofactor flavin-ademine dinneleotide (FAD), choline was oxidized into betaine while FAD was reduced to FADH2 which subsequently reduced 1,4-benzoquinone into hydroquinone. The later was finally oxidized at a relatively low potential of +450 mV versus saturated calomel electrode (SCE). Nicotine inhibits the activity of enzyme with an effect of decreasing of oxidation current. The experimental conditions were optimized. The electrode has a linear response to choline within 1.25×10−4 to 1.25×10−3 mol l−1. The nicotine measurements were carried out in 0.067 mol l−1phosphate buffer of pH 7.4 at an applied potential of 450 mV versus SCE. The electrode provided a linear response to nicotine over a concentration range of 2.0×10−5 to 9.2×10−4 mol l−1 with a detection limit of 1.0×10−5 mol l−1. The system was applied to the determination of nicotine in tobacco samples.  相似文献   

2.
A liquid chromatography-tandem mass spectrometry (LC-MS/MS) method for determining four tobacco-specific N-nitrosamines (TSNAs) in mainstream smoke from Chinese Virginia cigarettes was developed. Mainstream cigarette smoke particulate matter was collected on a Cambridge filter pad, further extracted using 100 mM ammonium acetate after 100 μL internal standard addition, and subsequently analyzed with LC-MS/MS. The limit of detection for NNN, NNK, NAT and NAB were 0.006, 0.013, 0.003 and 0.021 ng mL−1 respectively, with a linear calibration range spanning 1-200 ng mL−1. Intra- and inter-day precision for four TSNAs ranged from 3.3% to 8.5% and 2.3% to 10.1%; recovery was between 89.1% and 104.9% for Chinese Virginia cigarettes. The proposed method was applied to evaluate TSNAs yields for 39 commercially available cigarettes in Chinese market under ISO and “Canadian intense” machine smoking regimes, on the ground that it comes closest to representing smoke deliveries from human smoking. Total TSNAs emissions are more than double under the Canadian regime. TSNAs:nicotine ratios were used in our assay to show any differences in yield from different brands. TSNAs:nicotine levels show more than a 10-fold difference across brands and types (Chinese Virginia cigarettes and blended cigarettes) in the Chinese market.  相似文献   

3.
Two vibrational spectrometry-based methodologies were developed for Metamitron determination in pesticide formulations. Fourier transform-middle infrared (FT-MIR) procedure was based on the extraction of Metamitron by CHCl3 and latter determination by peak area measurement between 1556 and 1533 cm−1, corrected with a two points baseline established from 1572 to 1514 cm−1. Fourier transform-near infrared (FT-NIR) determination was made after the extraction of Metamitron in acetonitrile and measuring the peak area between 6434 and 6394 cm−1 corrected using a two points baseline defined between 6555 and 6228 cm−1. Repeatability, as relative standard deviation, of 5 independent measurements at mg g−1 concentration level, of 0.16% and 0.07% for MIR and NIR and a limit of detection of 0.03 and 0.004 mg g−1 were obtained for MIR and NIR, respectively.NIR determination provides a sample frequency of 120 h−1, higher than that found by MIR and liquid chromatographic methods (60 and 15 h−1, respectively). On the other hand, the NIR method reduces the solvent consumption and waste generation, to only 1 ml acetonitrile per sample as compared with 3.4 ml chloroform required for the MIR determination and 60 ml acetonitrile used in the chromatographic reference procedure. So, vibrational procedures can be considered serious alternatives to long and time consuming chromatographic methods usually recommended for quality control of commercially available pesticide formulations.  相似文献   

4.
Melchert WR  Rocha FR 《Talanta》2005,65(2):461-465
Nitrate determination in waters is generally carried out with cadmium filings and carcinogenic reagents or by reaction with phenolic compounds in highly concentrated sulfuric acid medium. In this work, it was developed a green analytical procedure for nitrate determination in natural waters based on direct spectrophotometric measurements in ultraviolet, using a flow-injection system with an anion-exchange column for separation of nitrate from interfering species. The proposed method employs only one reagent (HClO4) in a minimum amount (equivalent to 18 μL concentrated acid per determination), and allowed nitrate determination within 0.50-25.0 mg L−1, without interference of up to 200.0 mg L−1 humic acid; 1.0 mg L−1 NO2; 200.0 mg L−1 PO43−; 75.0 mg L−1 Cl; 50.0 mg L−1 SO42− and 15.0 mg L−1 Fe3+. The detection limit (99.7% confidence level) and the coefficient of variation (n = 20) were estimated as 0.1 mg L−1 and 0.7%, respectively. The results obtained for natural water samples were in agreement with those achieved by the reference method based on nitrate reduction with copperized cadmium at the 95% confidence level.  相似文献   

5.
An on-line system with vapour generation (VG) and Fourier transform infrared (FTIR) spectrometric detection has been developed for the determination of free ammonium and organic nitrogen in agrochemical formulations containing hydrolyzed proteins. Commercial samples were digested, in batch mode, with sulphuric acid and the obtained solution was alkalinized on-line to transform the NH4+ to NH3 that was continuously monitored by FTIR. Free ammonium was determined in the same system after simple dilution of undigested samples with water. Different gas phase separators were assayed in order to introduce gaseous NH3 into a home made IR gas cell of 10 cm pathlength, where the corresponding FTIR spectra were acquired by accumulating 10 scans per spectrum. The 967.0 cm−1 band was used for the quantification of ammonia. The figures of merit of the proposed method involve a linear range up to 100 mg L−1, a limit of detection (3σ) of 1.4 mg L−1 of N, a limit of quantification (10σ) of 4.8 mg L−1 of N, a precision (R.S.D.) of 3.0% for 10 replicate determinations of a 10.0 mg L−1 of N and a sample measurement frequency of 60 h−1. The method was successfully applied to the determination of free ammonium and total N in commercial amino acid formulations and results compare well with those obtained by the Kjeldhal method.  相似文献   

6.
Luo W  Chen Z  Zhu L  Chen F  Wang L  Tang H 《Analytica chimica acta》2007,588(1):117-122
A sensitive method for carbon tetrachloride (CCl4) determination has been developed with the aid of ultrasonic oxidation decolorization of methyl orange (MO). It is found that the ultrasonic oxidation decolorization rate of MO can be significantly promoted by adding a little amount of CCl4. The increased ultrasonic decolorization rate of MO is strongly dependent on the concentration of CCl4 added, and a linear correlation is observed between the amount of CCl4 and the decolorization rate of MO in the ultrasonic oxidation process. Thus, the CCl4 determination is transformed to a simple and direct determination of the decoloration extent of MO solution at a given concentration. As an indirect spectrophotometric determination of CCl4, the new method is sensitive and easy of operation with a maximum wavelength of 508 nm, molar absorptivity of 3.83 × 104 L mol−1 cm−1, and a Sandell sensitivity of 7.96 × 10−3 μg cm−2. Under optimized conditions, Beer's law is obeyed in the range of 0.4-20 mg L−1 of CCl4 (DL = 0.19 mg L−1, r = 0.9996). The concentrations of CCl4 in several practical samples have been determined satisfactorily by using this method.  相似文献   

7.
In this work, an on-line system with vapor-phase generation (VPG) and Fourier transform infrared (FTIR) spectrometric detection has been developed as a direct and highly selective analytical technique for the assay of penicillamine (PA). Potassium iodate solution was injected into a reactor, heated at 75 °C, containing PA. The CO generated under these conditions was transported by means of N2 gas carrier stream to an infrared gas cell and corresponding FTIR spectra were acquired in a continuous mode. The maximum absorbance of CO band at 2170 cm−1, corrected by a baseline established between 2240 and 2000 cm−1 at a nominal resolution of 2 cm−1, was selected as a measurement criterion. Initially, the effect of different chemical, physical and spectroscopic parameters, such as concentration and volume of oxidant, pH, equilibrium time, reactor temperature, reactor volume, N2 carrier flow rate and number of scans on the analytical signals were evaluated by using a short path length (10 cm) IR gas cell. At optimum experimental conditions, the method provided a relatively broad linear dynamic range of 4-380 mg L−1, a limit of detection of 0.5 mg L−1, a sampling frequency of 15 h−1 and a relative standard deviation (R.S.D.) of 1.6%. Further, the method was successfully applied to the determination of PA in pharmaceutical formulations and results compared well with those obtained by a reference colorimetric method.  相似文献   

8.
The inner filter effects in synchronous fluorescence spectra (Δλ = 60 nm) of sedimentary humic substances from a salt marsh were studied. Accordingly to their type and the influence of plant colonization, these humic substances have different spectral features and the inner filter effects act in a different manner. The fluorescence spectra of the humic substances from sediments with colonizing plants have a protein like band (λexc = 280 nm) which is strongly affected by primary and secondary inner filter effects. These effects were also observed for the bands situated at longer wavelengths, i.e., at λexc = 350 nm and λex = 454 nm for the fulvic acids (FA) and humic acids (HA), respectively. However, they are more important for the band at 280 nm, causing spectral distortions which can be clearly seen when the spectra of solutions 40 mg L−1 of different samples (Dissolved Organic Carbon – DOC ∼ 20 mg L−1) are compared with and without correction of the inner filter effects. The importance of the spectral distortions caused by inner filter effects has been demonstrated in solutions containing a mixture of model compounds which represent the fluorophores detected in the spectra of sedimentary humic samples. The effectiveness of the mathematical correction of the inner filter effects in the spectra of those solutions and of solutions of sedimentary humic substances was studied. It was observed that inner filter effects in the sedimentary humic substances spectra can be mathematically corrected, allowing to obtain a linear relationship between the fluorescence intensity and humic substances concentration and preventing distortions at concentrations as high as 50 mg L−1 which otherwise would obscure the protein like band.  相似文献   

9.
A sequential injection method (SIA) for carbon speciation in inland bathing waters was developed comprising, in a single manifold, the determination of dissolved inorganic carbon (DIC), free dissolved carbon dioxide (CO2), total carbon (TC), dissolved organic carbon and alkalinity. The determination of DIC, CO2 and TC was based on colour change of bromothymol blue (660 nm) after CO2 diffusion through a hydrophobic membrane placed in a gas diffusion unit (GDU). For the DIC determination, an in-line acidification prior to the GDU was performed and, for the TC determination, an in-line UV photo-oxidation of the sample prior to GDU ensured the conversion of all carbon forms into CO2. Dissolved organic carbon (DOC) was determined by subtracting the obtained DIC value from the TC obtained value. The determination of alkalinity was based on the spectrophotometric measurement of bromocresol green colour change (611 nm) after reaction with acetic acid. The developed SIA method enabled the determination of DIC (0.24–3.5 mg C L−1), CO2 (1.0–10 mg C L−1), TC (0.50–4.0 mg C L−1) and alkalinity (1.2–4.7 mg C L−1 and 4.7–19 mg C L−1) with limits of detection of: 9.5 μg C L−1, 20 μg C L−1, 0.21 mg C L−1, 0.32 mg C L−1, respectively. The SIA system was effectively applied to inland bathing waters and the results showed good agreement with reference procedures.  相似文献   

10.
This work presents an evaluation of iron and cadmium adsorption in sediment of the Furnas Hydroelectric Plant Reservatory located in Alfenas, Minas Gerais (Brazil). The metal determination was done employing a flow injection analysis (FIA) with an on-line filtering system. As detection techniques, flame atomic absorption spectrometry (FAAS) for iron and thermospray flame furnace atomic absorption spectrometry (TS-FF-AAS) for cadmium determinations were used. The developed methodology presented good limits of detection, being 190 μg L−1 for iron and 1.36 μg L−1 for cadmium, and high sampling frequency for both metals 144 and 60 readings h−1 for iron and cadmium, respectively. Both metals obey the Langmuir model, with maximum adsorptive capacity of 0⋅169 mg g−1 for iron and 7⋅991 mg g−1 for cadmium. For iron, a pseudo-first-order kinetic model was obtained with a theoretical Qe = 9⋅8355 mg g−1 (experimental Qe = 9⋅5432 mg  g−1), while for cadmium, a pseudo-second-order kinetic model was obtained, with a theoretical Qe = 0.3123 mg g−1 (experimental Qe = 0⋅3052 mg g−1).  相似文献   

11.
Zhou R  Luo W  Zhu L  Chen F  Tang H 《Analytica chimica acta》2007,597(2):295-299
Ultrasonic oxidation of iodide was investigated in the presence of carbon tetrachloride (CCl4). The ultrasonic oxidation of potassium iodide led to formation of iodine and then I3 in the presence of excess iodide, and the generated I3 shows strong UV absorption with a molar absorptivity of 2.31 × 104 L mol−1 cm−1 at the maximum absorption wavelength of 351 nm. The ultrasonic oxidation of iodide was found to be significantly promoted by a small addition of CCl4, and it was further found that the generation rate was increased with the amount of CCl4 added. This can be used to analyze the level of CCl4 dissolved in aqueous solutions. Under optimum conditions, the concentration of generated iodine (or its absorption at 351 nm) was found to correlated linearly with the concentration of CCl4 in the range of 0.2-50 mg L−1 (detection limit = 0.09 mg L−1, R2 = 0.999). As an alternative indirect spectrophotometric method of CCl4 determination, the proposed method was successfully applied to determine the concentrations of CCl4 in several practical samples, showing merits of being sensitive and simple of operation.  相似文献   

12.
The development of a simple, efficient and sensitive sensor for dissolved oxygen is proposed using the host-guest binding of a supramolecular complex at a host surface by combining a self-assembled monolayer (SAM) of mono-(6-deoxy-6-mercapto)-β-cyclodextrin (βCDSH), iron (III) tetra-(N-methyl-4-pyridyl)-porphyrin (FeTMPyP) and cyclodextrin-functionalized gold nanoparticles (CDAuNP). The supramolecular modified electrode showed excellent catalytic activity for oxygen reduction. The reduction potential of oxygen was shifted about 200 mV toward less negative values with this modified electrode, presenting a peak current much higher than those observed on a bare gold electrode. Cyclic voltammetry and rotating disk electrode (RDE) experiments indicated that the oxygen reduction reaction involves probably 4-electrons with a rate constant (kobs) of 7 × 104 mol−1 L s−1. A linear response range from 0.2 up to 6.5 mg L−1, with a sensitivity of 5.5 μA L mg−1 (or 77.5 μA cm−2 L mg−1) and a detection limit of 0.02 mg L−1 was obtained with this sensor. The repeatability of the proposed sensor, evaluated in terms of relative standard deviation was 3.0% for 10 measurements of a solution of 6.5 mg L−1 oxygen.  相似文献   

13.
A FTIR methodology has been developed for the simultaneous determination of Cypermethrin and Chlorpyrifos in pesticide commercially available formulations. The method involves the extraction of both active principles with CHCl3 and direct measurement of the peak area values between 1747 and 1737 cm−1 corrected with a baseline defined at 2000 cm−1 for Cypermethrin and peak height values established at 1549 cm−1 corrected using a baseline situated at 1650 cm−1 for Chlorpyrifos.The limits of detection achieved were of the order of 0.7 and 0.4% (w/w), and the relative standard deviation 0.4 and 0.2% for Cypermethrin and Chlorpyrifos, respectively. The developed procedure provided statistically comparable results with those obtained by HPLC, for a series of commercial samples, which validated the FTIR method. The procedure developed reduces organic solvent consumption, per sample preparation, from 51 ml CH3CN required for HPLC to 2.5 ml CHCl3, and reduces waste generation also increasing the sample measurement frequency, from 3 to 30 samples/h, as compared with the HPLC-UV reference method.  相似文献   

14.
Antimony (Sb) contamination has become a growing concern in recent years. Strategies for reducing Sb contamination and its related health risks are urgently desired. This study was conducted to explore the possibility of selenium (Se) detoxification on Sb toxicity in paddy rice in order to find a feasible method to reduce the health risk of Sb pollution. Seedlings of paddy rice were exposed to 5 mg L1 Sb (KSbC4H4 O7·1/2H2O), in the presence of Se (Na2SeO3) at 0.1, 1, 5 mg L1 in culture solution, with no Sb and Se addition as the control. Paddy rice took up Sb greatly and the highest Sb contents measured among all treatments in this experiment in the leaves, stems and roots were 65.5, 298.5 and 195.7 mg kg1, respectively. Without Sb addition in the solution, single exposure to 0.1 mg L1 Se remarkably reduced the malondialdehyde (MDA) formation in paddy rice,demonstrating the beneficial effect of Se at low dosages. The addition of 5 mg L1 Sb was found to generate toxicity to paddy rice, showing as decreased biomass and increased leaf MDA content in paddy rice, while addition of 1 mg L1 Se mitigated the toxicity of Sb, as seen with the decreased leaf MDA content and increased biomass, indicating antidotal role of Se to Sb. In addition, the presence of 0.1, 1, 5 mg L1 Se generally decreased the accumulation of Sb in the leaves, stems and roots in paddy rice. Toxicity was also seen when paddy rice was exposed to single Se at 1 and 5 mg L1 levels, however, 5 mg L1 Sb addition was found to decrease the contents of Se in the leaves/stems whereas increased them in roots, accompanied with decreased MDA contents and increased biomass in paddy rice, indicating a possible detoxification role of Sb to Se too. Therefore, Sb, although toxic, could also be an antitoxin to Se in paddy rice at certain condition. Our results showed that Se could alleviate Sb toxicity efficiently in paddy rice through two effects as antagonism and antioxidation.  相似文献   

15.
The development of a highly sensitive sensor for oxygen is proposed using a glassy carbon (GC) electrode modified with alternated layers of iron(II) tetrasulfonated phthalocyanine (FeTsPc) and iron(III) tetra-(N-methyl-pyridyl)-porphyrin (FeT4MPyP). The modified electrode showed excellent catalytic activity for the oxygen reduction. The reduction potential of the oxygen was shifted about 330 mV toward less negative values with this modified electrode, presenting a peak current much higher than those observed on a bare GC electrode. Cyclic voltammetry and rotating disk electrode (RDE) experiments indicated that the oxygen reduction reaction involves 4 electrons with a heterogenous rate constant (kobs) of 3 × 105 mol−1 L s−1. A linear response range from 0.2 up to 6.4 mg L−1, with a sensitivity of 4.12 μA L mg−1 (or 20.65 μA cm−2 L mg−1) and a detection limit of 0.06 mg L−1 were obtained with this sensor. The repeatability of the proposed sensor, evaluated in terms of relative standard deviation (R.S.D.) was 2.0% for 10 measurements of a solution of 6.4 mg L−1 oxygen. The sensor was applied to determine oxygen in pond and tap water samples showing to be a promising tool for this purpose.  相似文献   

16.
In this work, for the first time, capillary zone electrophoresis (CZE) technique combined with microwave-assisted extraction (MAE) was developed for the fast quantification of chlorogenic acid (CA) in tobacco residues. CA in tobacco residue samples were extracted by MAE technique, and then analyzed by CZE. As a new sample preparation method for tobacco residues, the MAE procedure is optimized, validated and compared with conventional methods including ultrasonic extraction (USE) and reflux extraction (RE). It is found that MAE gives the best result due to the highest extraction efficiency within shortest extraction time (only 4.0 min). Here, CA is determined by CZE based on the calibration curve of its authentic standard. The method linearity, detection limit, precision and recovery are studied. The results show that the combined MAE and CZE method has a linearity (R2 0.991, 0.003-0.5 mg ml−1), a limit of detection (0.003 mg ml−1), a limit of quantification (0.01 mg ml−1), good precision (R.S.D. = 4.28%) and a finer recovery (89.0%). The proposed method was successfully applied to the analysis of CA in tobacco residue samples. The experiment results have demonstrated that the CZE combined with MAE is a convenient, fast, economical and reliable method for the determination of CA in tobacco residues.  相似文献   

17.
The paper presents a new method for a simultaneous determination of inorganic nitrogen species in the oxidized (NO2, NO3) and reduced (NH4+) form in rain water samples. The method is based on a system of nitrogen species separation employing ion exchange and diode-array detection. The ions are separated in a strong ion-exchanger, nitrites and nitrates are determined directly at 208 and 205 nm, respectively, while the ammonium ions are determined in the column hold-up time after a post-column derivatization by the Nessler reagent, at 425 nm. The use of a diode-array detector permits a simultaneous identification of the inorganic nitrogen species in 8 min. The detection limits obtained are: NO2, 0.1 mg L−1; NO3, 0.05 mg L−1; NH4+, 1 mg L−1. The method proposed has been successfully used for speciation analysis of inorganic nitrogen in precipitation.  相似文献   

18.
A flow injection (FI) method with flame atomic absorption spectrometry (FAAS) detection was developed for the determination and speciation of nitrite and nitrate in foodstuffs and wastewaters. The method is based on the oxidation of nitrite to nitrate using a manganese(IV) dioxide oxidant microcolumn where the flow of the sample through the microcolumn reduces the MnO2 solid phase reagent to Mn(II), which is measured by FAAS. The absorbance of Mn(II) are proportional to the concentration of nitrite in the samples. The injected sample volume was 400 μL with a sampling rate of analyses was 90 h−1 with a relative standard deviation better than 1.0% in a repeatability study. Nitrate is reduced to nitrite in proposed FI-FAAS system using a copperized cadmium microcolumn and analyzed as nitrite. The calibration curves were linear up to 20 mg L−1 and 30 mg L−1 with a detection limit of 0.07 mg L−1 and 0.14 mg L−1 for nitrite and nitrate, respectively. The results exhibit no interference from the presence of large amounts of ions. The method was successfully applied to the speciation of nitrite and nitrate in spiked natural water, wastewater and foodstuff samples. The precision and accuracy of the proposed method were comparable to those of the reference spectrophotometric method.  相似文献   

19.
Biogenic amines, and putrescine and cadaverine in particular, have significant importance in the area of food quality monitoring, and are also potentially important markers of infection, for cancer, diabetes, arthritis and cystic fibrosis. A thermal desorption-gas chromatograph-heated differential mobility spectrometer was constructed and the significant effect of interactions between cell temperature and dispersion field strength on the observed responses studied. The experiment design was a Box-Wilson central composite design (CCD) over the levels of 10-24 kV cm−1 for dispersion field strength and 100-130 °C for cell temperature. The optimum values were estimated to be 16.22 kV cm−1 and 116 °C for putrescine and 14.78 kV cm−1 and 112 °C for cadaverine, respectively with an ammonia dopant at 19 mg m−3.An amine test atmosphere generator was constructed and produced stable concentrations of putrescine (7 mg m−3) and cadaverine (4 mg m−3) vapours at 50 ± 0.5 °C. Tenax TA-Carbotrap adsorbent tubes were used to sample putrescine and cadaverine vapour standards and a linear response function over the range of sample masses 5-20 ng was obtained at 15.0 kV cm−1 115 °C, with a R2 of 0.99 for both putrescine and cadaverine. The sample mass at the limit of detection was estimated to be 3 ng for putrescine and cadaverine. Preliminary data from sampling the headspace of chicken meat revealed a 62% increase in the recovered masses of putrescine from 0.84 to 1.36 ng in the sampled air.  相似文献   

20.
An artificial neural network (ANN) procedure was used in the development of a catalytic spectrophotometric method for the determination of Cu(II) and Ni(II) employing a stopped-flow injection system. The method is based on the catalytic action of these ions on the reduction of resazurin by sulfide. ANNs trained by back-propagation of errors allowed us to model the systems in a concentration range of 0.5-6 and 1-15 mg l−1 for Cu(II) and Ni(II), respectively, with a low relative error of prediction (REP) for each cation: REPCu(II) = 0.85% and REPNi(II) = 0.79%. The standard deviations of the repeatability (sr) and of the within-laboratory reproducibility (sw) were measured using standard solutions of Cu(II) and Ni(II) equal to 2.75 and 3.5 mg l−1, respectively: sr[Cu(II)] = 0.039 mg l−1, sr[Ni(II)] = 0.044 mg l−1, sw[Ni(II)] = 0.045 mg l−1 and sw[Ni(II)] = 0.050 mg l−1. The ANNs-kinetic method has been applied to the determination of Cu(II) and Ni(II) in electroplating solutions and provided satisfactory results as compared with flame atomic absorption spectrophotometry method. The effect of resazurin, NaOH and Na2S concentrations and the reaction temperature on the analytical sensitivity is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号