首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Kim KS  Park JK 《Lab on a chip》2005,5(6):657-664
This paper describes a novel microfluidic immunoassay utilizing binding of superparamagnetic nanoparticles to beads and deflection of these beads in a magnetic field as the signal for measuring the presence of analyte. The superparamagnetic 50 nm nanoparticles and fluorescent 1 microm polystyrene beads are immobilized with specific antibodies. When target analytes react with the polystyrene beads and superparamagnetic nanoparticles simultaneously, the superparamagnetic nanoparticles can be attached onto the microbeads by the antigen-antibody complex. In the poly(dimethylsiloxane)(PDMS) microfluidic channel, only the microbeads conjugated with superparamagnetic nanoparticles by analytes consequently move to the high gradient magnetic fields under the specific applied magnetic field. In this study, the magnetic force-based microfluidic immunoassay is successfully applied to detect the rabbit IgG and mouse IgG as model analytes. The lowest concentration of rabbit IgG and mouse IgG measured over the background is 244 pg mL(-1) and 15.6 ng mL(-1), respectively. The velocities of microbeads conjugated with superparamagnetic nanoparticles are demonstrated by magnetic field gradients in microfluidic channels and compared with the calculated magnetic field gradients. Moreover, dual analyte detection in a single reaction is also performed by the fluorescent encoded microbeads in the microfluidic device. Detection range and lower detection limit can be controlled by the microbeads concentration and the higher magnetic field gradient.  相似文献   

2.
We established a novel method to evaluate endocrine disrupting chemicals (EDCs) by assembling the estrogen receptor-ligand binding domain (ERLBD) and GFP labeled coactivator on magnetic nanoparticles. EDC can promote or inhibit coactivator recruitment to the ligand-ERLBD complex. ERLBD was displayed on the surface of nano-sized bacterial magnetic particles (BacMPs) produced by the magnetic bacterium, Magnetospirillum magneticum AMB-1. Our method resulted in 38 molecules of ERLBD molecules on a BacMPs with diameter of 75 nm. Furthermore, ligand-dependent recruitment assays of GFP labeled coactivator to ERLBD-BacMPs was performed by measuring the fluorescence intensity. 17β-estradiol (E2), estriol, diethylstilbestrol, zeralenone (full agonist), octylphenol (partial agonist) and ICI 182,780 (antagonist) were evaluated by this method. Full agonists tested showed increased fluorescence with increasing agonist concentration. Octylphenol had lower fluorescence intensity than E2. ICI 182,780 did not produce any fluorescence. The method developed in this study can evaluate the estrogenic potential of chemicals by discriminating whether they are an ER full agonist, partial agonist, or antagonist. Finally, this method is amenable adaptation into a high throughput format by using automated magnetic separation.  相似文献   

3.
A new approach to the surface functionalization of magnetic polystyrene microbeads with chloroacetyl chloride in the presence of aluminum chloride was reported. Composite microbeads consisting of polymer-coated iron oxide nanoparticles were prepared by spraying suspension polymerization. Functional chloride groups were introduced onto the surface of magnetic polystyrene microbeads by surface chemical reaction without destroying the magnetite nanoparticles within the microbeads. First, a complex was synthesized by a reaction between aluminum chloride and chloroacetyl chloride. Then, the complex was added dropwise to the solution of magnetic polystyrene microbeads, and a surface acylation reaction between complex and polystyrene microbeads was carried out. Subsequently, the amino groups were coupled to the magnetic microbeads via an ammonolysis reaction between ethylenediamine and chloride groups on the acylated magnetic polystyrene microbeads. The chemical composition, surface functional groups, and magnetism of the magnetic polystyrene microbeads before and after surface functionalization were characterized by Fourier transform infrared spectroscopy and vibrating sample magnetometry. The results showed that the surface functionalization reaction had little impact on the magnetism of the microbeads. The content of surface amino groups on the magnetic polystyrene microbeads was found to be 0.2 mmol/g. An affinity dye, Cibacron Blue F3G-A (CB), was then immobilized to prepare a magnetic affinity adsorbent. It was confirmed from X-ray photoelectron spectroscopy spectra that the CB molecules were covalently coupled on the magnetic microbeads.  相似文献   

4.
We recently reported the ‘pinwheel effect’ as the foundation for a DNA assay based on a DNA concentration-dependent aggregation of silica-coated magnetic beads in a rotating magnetic field (RMF). Using a rotating magnet that generated a 5 cm magnetic field that impinged on a circular array of 5 mm microwells, aggregation was found to only be effective in a single well at the center of the field. As a result, when multiple samples needed to be analyzed, the single-plex (single well) analysis was tedious, time-consuming and labor-intensive, as each well needed to be exposed to the center of the RMF in a serial manner for consistent well-to-well aggregation. For more effective multiplexing (simultaneous aggregation in 12 wells), we used a circular array of microwells and incorporated ‘agitation’ as a second force that worked in concert with the RMF to provide effective multiplexed aggregation-based DNA quantitation. The dual-force aggregation (DFA) approach allows for effective simultaneous aggregation in multiple wells (12 demonstrated) of the multi-well microdevice, allowing for 12 samples to be interrogated for DNA content in 140 s, providing a ∼35-fold improvement in time compared to single-plex approach (80 min) and ∼4-fold improvement over conventional fluorospectrometric methods. Furthermore, the increased interaction between DNA and beads provided by DFA improved the limit of detection   to 250 fg μL−1. The correlation between the DFA results and those from a fluorospectrometer, demonstrate DFA as an inexpensive and rapid alternative to more conventional methods (fluorescent and spectrophotometric).  相似文献   

5.
We describe a simple method to fabricate an array of polystyrene microbeads (PS μbeads) conjugated with an elastin-like polypeptide (ELP) on a glass surface using a removable polymer template (RPT). A thin layer of adhesive was spun-cast on glass and cured by UV radiation. Micropatterns of an RPT were then transferred onto the surface by microcontact printing. The adhesion of PS μbeads on the surface depended on the adhesion performance of the adhesive layer, which could be adjusted by irradiation time. An array of PS μbeads conjugated with ELP was used for a smart immunoassay of prostate-specific antigen (PSA), a cancer marker. By controlling the phase transition of ELP molecules, PSA molecules were selectively adhered or released from the bead surface. The selective and reversible binding of PSA molecules on the bead surface was characterized with fluorescence microscopy.  相似文献   

6.
Lien KY  Chuang YH  Hung LY  Hsu KF  Lai WW  Ho CL  Chou CY  Lee GB 《Lab on a chip》2010,10(21):2875-2886
The present study reports a new three-dimensional (3D) microfluidic platform capable of rapid isolation and detection of cancer cells from a large sample volume (e.g. ~1 mL) by utilizing magnetic microbead-based technologies. Several modules, including a 3D microfluidic incubator for the magnetic beads to capture cancer cells, a microfluidic control module for sample transportation and a nucleic acid amplification module for genetic identification, are integrated into this microsystem. With the incorporation of surface-modified magnetic beads, target cancer cells can be specifically recognized and conjugated onto the surface of the antibody-coated magnetic microbeads by utilizing a swirling effect generated by the new 3D microfluidic incubator, followed by isolating and purifying the magnetic complexes via the incorporation of an external magnet and a microfluidic control module, which washes away any unbound waste solution. Experimental results show that over 90% of the target cancer cells can be isolated from a large volume of bio-samples within 10 min in the 3D microfluidic incubator. In addition, the expressed genes associated with ovarian and lung cancer cells can also be successfully amplified by using the on-chip nucleic acid amplification module. More importantly, the detection limit of the developed system is found to be 5 × 10(1) cells mL(-1) for the target cancer cells, indicating that this proposed microfluidic system may be adapted for clinical use for the early detection of cancer cells. Consequently, the proposed 3D microfluidic system incorporated with immunomagnetic beads may provide a promising automated platform for the rapid isolation and detection of cancer cells with a high sensitivity.  相似文献   

7.
Sun Y  Song D  Bai Y  Wang L  Tian Y  Zhang H 《Analytica chimica acta》2008,624(2):294-300
The conjugates of magnetic beads coupled with an antibody can be trapped on the Au film firmly due to the magnetic force for the immunoassay of a surface plasmon resonance (SPR) biosensor. However, this approach exhibits significant limitations in robustness and sensitivity due to incomplete dissociation of magnetic beads from the Au film. The incorporation of a polyelectrolyte film on the Au surface can prevent the magnetic beads from the direct contact with the Au film. The layer-by-layer assembly of polyelectrolyte was used as spacer between the gold surface and the magnetic bead. Different layers of polyelectrolyte can be assembled onto the Au film based on an electrostatic force between polycations and polyanions. After the polyelectrolyte film was fabricated on the Au film, the deposition of the magnetic beads was maintained effectively on the film, which favors the sensitivity of the biosensor and the regeneration of the sensing membrane. When the polyelectrolyte layers of (PAH/PSS)3 were constructed on the Au film, the SPR biosensor with magnetic beads exhibited a satisfactory response to human IgG in the concentration range from 0.25 to 30.00 μg mL−1, and the determination limit obtained is eight times lower than that obtained with (PAH/PSS)1 layer.  相似文献   

8.
We present a new approach to the direct patterning of biologically and magnetically active microbeads in nonbiofouling polymer scaffolds for use in microfluidic devices. Briefly, the process involves treatment of a glass substrate, conformal contact bonding of a PDMS microchannel on the substrate, filling of the channel with beads and prepolymer solution, and UV-initiated photopolymerization of a mask-defined pattern using a standard inverted microscope. This versatile and simple method allows for the rapid fabrication of dispersed or packed bead patterns in poly(ethylene glycol) (PEG) hydrogels that are covalently linked to glass surfaces. By exploiting the relative opacity of the microbeads used, we are able to create both partially exposed and fully encapsulated bead patterns. To demonstrate the utility of this new technology, we separated magnetic bead-bound B lymphocytes from T lymphocytes on a PEG-encapsulated magnetic filtration platform and also captured B cells directly on patterned, protein-decorated beads in a flow-through microfluidic device. Beyond cell sorting, the accurate patterning of industrially standardized, chemically diverse microbeads may have significant implications for microchip-based analyte detection.  相似文献   

9.
Hu Y  Li Y  Liu R  Tan W  Li G 《Talanta》2011,84(2):462-470
Novel magnetic molecularly imprinted polymer (MIP) beads using ractopamine as template for use in extraction was developed by microwave heating initiated suspension polymerization. Microwave heating, as an alternative heating source, significantly accelerate the polymerization process. By incorporating magnetic iron oxide, superparamagnetic composite MIP beads with average diameter of 80 μm were obtained. The imprinted beads were then characterized by scanning electron microscopy, Fourier transform infrared spectroscopy, thermogravimetric analysis and vibrating sample magnetometer. Highly cross-linked porous surface and good magnetic property were observed. The adsorption isotherm modeling was performed by fitting the data to Freundlich isotherm model. The binding sites measured were 3.24 μmol g−1 and 1.17 μmol g−1 for the magnetic MIP beads and the corresponding non-imprinted magnetic beads, respectively. Cross-selectivity experiments showed the recognition ability of the magnetic MIP beads to analytes is relative to degree of molecular analogy to the template. Finally, this magnetic MIP bead was successfully used for enrichment of ractopamine, isoxsuprine and fenoterol from ultrasonically extracted solution of pork and pig liver followed by high performance chromatography with fluorescence detection. The proposed method presented good linearity and the detection limits was 0.52-1.04 ng mL−1.The recoveries were from 82.0% to 90.0% and from 80.4% to 86.8% for the spiked pork and pig liver, respectively, with the RSDs of 5.8-10.0%. Combination of the specific adsorption property of the MIP material and the magnetic separation provided a powerful analytical tool of simplicity, flexibility, and selectivity.  相似文献   

10.
Xiluan Yan  Masaaki Kai 《Talanta》2009,79(2):383-4519
We have developed a novel sensitive chemiluminescence (CL) aptasensor for the target assay as exemplified by using adenosine as a model target. In this work, we have demonstrated the signaling mechanism to make detection based on magnetic separation and 3,4,5-trimethoxyl-phenylglyoxal (TMPG), a special CL reagent as the signaling molecule, which reacts instantaneously with guanine nucleobases (G) of adenosine-binding aptamer strands. Briefly, amino-functioned capture DNA sequences are immobilized on the surface of carboxyl-modified magnetic beads, and then hybridized with label-free G-rich (including 15 guanine nucleobases) adenosine-binding aptamer strands to form our CL aptasensor. Upon the introduction of adenosine, the aptamer on the surface of magnetic beads is triggered to make structure switching to the formation of the adenosine/aptamer complex. Consequently, G-rich aptamer strands are forced to dissociate from magnetic beads sensing interface, resulting in a decrease of CL signal. The decrement of peak signal is proportional to the amount of adenosine. The effects of the amounts of capture DNA, aptamer, magnetic beads are investigated and optimized. It was found that the CL intensity had a linear dependency on the concentration of adenosine in the range of 4 × 10−7 to 1 × 10−5 M. With a low detection limit of 8 × 10−8 M and simplicity in CL detection, this novel technique will offer a great promise for future target/aptamer analysis.  相似文献   

11.
A rapid and sensitive immunoassay based on a sequential injection analysis (SIA) using magnetic microbeads for the determination of alkylphenol polyethoxylates (APnEOs) is described. An SIA system was constructed from a syringe pump, a switching valve, a flow-through type immunoreaction cell equipped with a photon counting unit and a neodymium magnet. Magnetic beads, to which an anti-APnEOs monoclonal antibody was immobilized, were used as a solid support in an immunoassay. The introduction, trapping and release of the magnetic beads in and from the immunoreaction cell were controlled by means of a neodymium magnet and adjusting the flow of a carrier solution. The immunoassay was based on an indirect competitive immunoreaction of an anti-APnEOs monoclonal antibody immobilized on the magnetic beads with a sample APnEOs and a horseradish peroxidase (HRP)-labeled APnEOs in the same sample solution, and was based on the subsequent chemiluminscence reaction of HRP on the magnetic microbeads with a luminol solution containing hydrogen peroxide and p-iodophenol. The anti-APnEOs antibody was immobilized on the magnetic microbeads by coupling the antibody with the magnetic beads after activation of a carboxylate moiety on the surface of the magnetic beads that had been coated with a polylactic acid film. The antibody immobilized magnetic beads were introduced in the immunoreaction cell and trapped in it by the neodymium magnet, which was equipped beneath the immunoreaction cell. An APnEOs sample solution containing the HRP-labeled APnEOs at a constant concentration, and a luminol solution containing hydrogen peroxide and p-iodophenol were sequentially introduced into the immunoreaction cell, according to an SIA programmed sequence. Chemiluminescence emission was monitored by means of a photon counting unit located at the upper side of the immunoreaction cell by collecting the emitted light with a lens. A typical sigmoidal calibration curve was obtained, when the logarithm of the concentration of APnEOs was plotted against the chemiluminescence intensity as the number of photons in 100 ms using standard APnEOs sample solutions at various concentrations (0–1000 ppb) under optimum conditions. The lower detection limit defined as IC80 is ca 10 ppb. The time required for analysis is less than 15 min per a sample. The present method was successfully applied to the determination of APnEOs in river water.  相似文献   

12.
Exploring graphene oxide (GO), DNA hybridization detection usually relies on either GO decoration or DNA sequences labeling. The former endows GO with desired chemical, optical, and biological properties. The latter adopts labeled molecules to indicate hybridization. In the present work, we propose a simple, label-free DNA assay using undecorated GO directly as the sensing platform. GO is anchored on diazonium functionalized electrode through electrostatic attraction, hydrogen bonding or epoxy ring-opening. The π–π stacking interaction between hexagonal cells of GO and DNA base rings facilitates DNA immobilization. The adsorbed DNA sequence is specially designed with two parts, including immobilization sequence and probe sequence. In the absence of target, the two sequences lie nearly flat on GO platform. In the presence of target, probe hybridizes with it to form double helix DNA, which ‘stands’ on GO. While the immobilization sequence part remains ‘lying’ on GO surface. Hence, DNA hybridization induces GO interfacial property changes, including negative charge and conformational transition from ‘lying’ ssDNA to ‘standing’ dsDNA. These changes are monitored by electrochemical impedance spectroscopy and adopted as the analytical signal. This strategy eliminates the requirement for GO decoration or DNA labeling, representing a comparatively simple and effective way. Finally, the principle is applied to the detection of conserved sequence of the human immunodeficiency virus 1 pol gene fragment. The dynamic detection range is from 1.0 × 10−12 to 1.0 × 10−6 M with detection limit of 1.1 × 10−13 M with 3σ. And the sequences with double- or four-base mismatched are readily distinguishable. In addition, this strategy may hold great promise for potential applications from DNA biosensing to nanostructure framework construction based on the versatile DNA self-assembly.  相似文献   

13.
A new microchip protocol has been developed for rapid measurements of the ‘total’ content of phenolic compounds, as well as for a detailed fingerprint identification of the ‘individual’ ones. The protocol involves the use of a microchip flow-injection analysis for fast screening and early detection of phenols and switching to the separation (fingerprint) mode once such compounds are detected. This is readily accomplished by exchanging the run buffers in the separation channel. While operating with an acidic run buffer (pH 5) offers high speed flow-injection measurements of the ‘total’ phenolic content, on chip switching to a basic buffer (pH 8) leads to ionization of the phenolic compounds and to their effective separation and detection. Under optimum conditions, assay rates of about 120 and 18 samples/h can be realized for the ‘total’ and ‘individual’ measurements, respectively. The effect of the buffer pH, switching (washing) time, applied voltages and other relevant variables, is described. The concept is illustrated in connection to amperometric detection and is attractive for a wide range of environmental-monitoring applications.  相似文献   

14.
A new apparatus, called ‘membraneless vaporization’ (MBL-VP) unit was designed and developed for direct analysis of solid samples. Solid analyte was converted into a gaseous form which then reacts with an indicator reagent. Change in absorbance was used to quantitate the analyte. Stirring with a magnetic bar was employed to facilitate the evaporation of the gas. Unlike the pervaporation technique, hydrophobic membrane was not required for this MBL-VP technique.Application of the membraneless technique for direct determination of calcium carbonate in calcium supplements, has shown to be very precise (R.S.D. = 2.5% for 0.16 mmol CO32−), with detection limit of 0.5 mg CaCO3. Results by this method agreed well with flame atomic absorption spectrometric method. Sample throughput was 20 samples h−1.  相似文献   

15.
A novel ‘O-acyl isodipeptide unit’, Boc-Thr(Fmoc-Val)-OH 5 has been successfully used for the efficient synthesis of a difficult sequence-containing pentapeptide based on the ‘O-acyl isopeptide method’, in which racemization-inducible esterification could be omitted, suggesting that the use of O-acyl isodipeptide units allows the application of this method to fully automated protocols for the synthesis of long peptides or proteins.  相似文献   

16.
A new suspension array built upon laboratory-prepared functional fluorescence-encoded polystyrene beads (FFPBs) was developed for multiplex immunodetection of tumor markers. The FFPBs were synthesized by copolymerizing rhodamine 6G (R6G) and carboxyl function groups on the surface of the seed beads forming a core-shell structure. The fabrication process was facile and the encoding fluorescence intensity of the beads can be precisely controlled by adjusting the quantity of R6G. In present work, we demonstrated that the quantity variation of impregnated R6G had negligible effect on the coupling efficiency of biomolecules onto the surface of the FFPBs. The R6G encoding fluorescence remained good monodispersity upon capture probe coupling and immunocomplex formation. No fluorescence resonance energy transfer was observed between the R6G doped in the bead shell and fluorophore used for antibody labeling. Under the optimal conditions, the proposed suspension array allowed simultaneous detection of α-fetoprotein, carcinoembryonic antigen, and prostate specific antigen in the ranges of 0.07-500 ng mL−1, 1-2000 ng mL−1, and 0.5-500 ng mL−1, respectively, with detection limits of 0.0626 ng mL−1, 0.554 ng mL−1, and 0.250 ng mL−1. Test on clinical serum samples demonstrated that the results obtained with suspension array were in good agreement with those of the reference electrochemiluminescence immunoassay method. We conclude that the laboratory-made FFPBs are sufficient as the microcarrier for the construction of suspension array in clinical diagnosis.  相似文献   

17.
Nitrogen dioxide (NO2) concentrations were used to evaluate the air quality before and after the infrastructural change of an important traffic artery in Mortsel, Antwerp (Belgium). During the reconstruction works two pairs of traffic lanes were reduced to one in each direction. Two sampling campaigns were conducted: the first one before the works in 2003 and the second one in 2005, after the road works were finished. Sampling was performed on a weekly base with the use of passive diffusion tubes on the streets, and also indoors in nearby houses. The samples were analyzed by ion chromatography, from which data the NO2 concentrations in air could be calculated. These results were compared with NO2 values from the air monitoring station 42R801 of the Flemish Environment Agency in Borgerhout, Antwerp. On the base of different NO2 concentrations, correlated well with the traffic density, sampling locations were classified into three groups as follows: 1) ‘heavily polluted’ (heavy traffic); 2) ‘moderately polluted’ (medium traffic); or 3) ‘less polluted’ (low traffic density). Sampling sites located further from the road works, enclosed to the group ‘less polluted’, showed the lowest NO2 concentrations. The highest NO2 level was found for the locations close to reconstruction works, which belonged to the group ‘heavily polluted’. The contribution of NO2 was at the same level before and after the road works. During the first campaign it ranged from 30 ± 7 µg/m3 to 71 ± 11 µg/m3 and during the second sampling it was between 36 ± 17 µg/m3 and 73 ± 17 µg/m3. These modernization works had no impact on preventing the traffic-related pollutant as NO2 and as a consequence no significant effect on the air quality in the studied region. It has been proven that the impact of traffic on the air quality is unmistakably high and simply reduction of the number of the traffic lanes, intended to discourage the traffic flow, had apparently no environmentally advantageous effect.  相似文献   

18.
A fully automated screening method based on superheated water extraction of linear alquilbenzene sulfonates from sediments prior to preconcentration/derivatization/detection is presented. A multivariate optimization of both the extraction step and derivatization step was performed. Superheated water extraction was compared with conventional Soxhlet extraction obtaining better recoveries (>95% versus 80-86%) and a drastic reduction of the extraction time (50 min versus 24 h) by the proposed method. The on-line coupling of the extractor with a preconcentration/derivatization/detection manifold through a flow-injection interface has permitted to obtain a fully automated screening approach. Moreover, this research constitutes an environmentally friendly method due to the use of water as extractant instead of an organic solvent.  相似文献   

19.
Shen LM  Chen ML  Chen XW 《Talanta》2011,85(3):1285-1290
A flow-through fluorescence optosensor with Sephadex G-50 microbeads as solid support is developed for the sensitive determination of tetracycline (TC). The fluorescent TC derivative encapsulated in CTAB micelle structures is retained onto the surface of the microbeads packed into a fluorescent flow cell in a flow system, followed by measurement of the native fluorescence of the TC derivative on the bead surface. The retained TC derivative is easily stripped off with DI water from the bead surface by breaking-down the micelle structure. This offers a convenient and effective way for the regeneration of the used solid support with DI water as a carrier. Under the optimal conditions, a linear calibration graph is obtained within a range of 3-500 μg L−1, along with a detection limit of 1.0 μg L−1. The present solid surface fluorescence optosensor provides a 22-fold improvement on the detection sensitivity for TC in comparison with that derived by fluorescence detection in aqueous medium. The feasibility of this flow-through fluorescence optosensor is evaluated by analyzing TC in a commercial drug tablet and surface water samples.  相似文献   

20.
A heterogeneous chemiluminescent (CL) flow immunoassay for DDT was optimized comparing different types of immunoaffinity supports: beads, nylon coils and membranes (membranes HyBondN+). In order to characterize solid immunoaffinity supports two basic immunoassay formats were performed, using (1) enzyme-labeled secondary and (2) enzyme-labeled specific monoclonal antibodies (MAbs). In both formats, hapten DDT5 conjugated to ovalbumin immobilized on solid supports according to the appropriate immobilization procedure, enzyme label (horseradish peroxidase, HRP) and luminescent detection (luminol/H2O2/p-iodophenol) were used. The lowest limit of detection (LOD), 1 nM p,p-DDT, was obtained with a membrane-based flow immunoassay with HRP-labeled specific antibody. Beads and packed tubing were discarded as appropriate supports because of the difficulties encountered for reproducible packing and the occurrence of light scatterring (beads), which seriously compromised the performance and reproducibility of the flow immunoassay.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号