首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
J Wang  M P Chatrathi  A Iba?ez 《The Analyst》2001,126(8):1203-1206
This article describes a novel 'Lab-on-a-Chip' protocol generating two electrophoretic peaks for a single analyte, based on the coupling of two different pre-column enzymatic reactions of the same substrate followed by electrophoretic separation of the reaction products. Such operation is illustrated for the measurement of glucose in connection to the corresponding glucose oxidase (GOx) and glucose dehydrogenase (GDH) reactions. The pre-column enzymatic reactions generate hydrogen peroxide and NADH species, that are separated (based on their different charges) and detected at the end-column amperometric detector. The peak current ratio can be used for confirming the peak identity, estimating the peak purity, addressing co-migrating interferences, and deviations from linearity. A driving voltage of 2000 V results in peroxide and NADH migration times of 93 and 260 s, respectively. Factors influencing the unique dual glucose response are examined and optimized. The concept can be extended to different target analytes based on the coupling of two pre-column reactions with electrophoretic separation of the reaction products.  相似文献   

2.
Vlcková M  Schwarz MA 《Electrophoresis》2005,26(14):2701-2707
Detection of biogenic monoamines in nanomolar concentrations is of great importance for probing the brain chemistry and for their analytics in biological fluids. The sensitivity enhancement of amperometric detection of neurotransmitters (NTs) and their metabolites after their electrophoretic separation on a microchip is presented and is based on coupled enzymatic reactions. The current response of the analyte is amplified by cyclic oxidation on a gold electrode mediated by reduced nicotinamide dinucleotide coenzyme and glucose oxidase enzyme present in the electrophoresis buffer. Using this approach, detection limits of about 10 nM for NTs and their metabolites can be reached.  相似文献   

3.
This article describes a novel microchip-based capillary electrophoresis and oncolumn enzymatic reaction analysis protocol for lactate dehydrogenase (LDH) isoenzymes with a home-made xenon lamp-induced fluorescence detection system. A microchip integrated with a temperature-control unit is designed and fabricated for low-temperature electrophoretic separation of LDH isoenzymes, optimal enzyme reaction temperature control, and product detection. A four-step operation and temperature control are employed for the determination of LDH activity by on-chip monitoring of the amount of incubation product of NADH during the fixed incubation period and at a fixed temperature. Experiments on the determination of LDH standard sample and serum LDH isoenzymes from a healthy adult donor are carried out. The results are comparable with those obtained by conventional CE. Shorter analysis times and a more stable and lower background baseline can be achieved. The efficient separation of different LDH forms indicates the potential of microfluidic devices for isoenzyme assay.  相似文献   

4.
The use of CE with contactless conductivity detection was evaluated for monitoring enzymatic reactions. The nonionic species ethanol, glucose, ethyl acetate, and ethyl butyrate were made accessible for analysis by CE via charged products or by-products obtained in enzymatic conversions using hexokinase, glucose oxidase, alcohol dehydrogenase, and esterase. Two of the reactions, namely the conversion of glucose with glucose oxidase and that of ethylacetate with esterase, were also successfully demonstrated on a microchip device. Quantification for ethyl acetate, taken as an example, was found possible with a detection limit of approximately 7 microM.  相似文献   

5.
A microfluidic device coupling immunological and enzymatic assays within a single microchannel has been developed for simultaneous measurements of insulin and glucose. Such a dual-mode (enzyme/immuno) protocol involves precolumn reactions of insulin and glucose with the enzyme-labeled anti-human insulin and glucose-dehydrogenase/NAD+, respectively, followed by the electrophoretic separation of the free antibody, antibody-antigen complex, and the NADH product of the enzymatic reaction. The separation is followed by a postcolumn reaction of the alkaline-phosphatase tracer with the p-NPP substrate and a downstream amperometric detection of the p-nitrophenol and NADH products. Despite the huge concentration difference [millimolar (glucose) and nanomolar (insulin)] and the use of different assay principles, the new biochip responds independently to the corresponding target analytes, with linear dynamic ranges over their clinically relevant ranges. Complete assays, carried out within less than 4 min, lead to good precision (RSD 0.36%) for the insulin/glucose ratio. The resulting biochip allows simultaneous testing for insulin and glucose to be performed more rapidly, easily, and economically, and hence it holds great promise for improved management of diabetes.  相似文献   

6.
Fanguy JC  Henry CS 《The Analyst》2002,127(8):1021-1023
The first report of pulsed amperometric detection (PAD) on an electrophoretic microchip is presented. A hybrid poly-(dimethylsiloxane)/glass device was coupled with a platinum working electrode for the electrochemical detection of glucose, maltose, and xylose. Under optimized detection conditions, glucose was found to respond linearly from 20 to 500 microM with a measured detection limit of 20 microM. The coupling of PAD with a microchip provides a straightforward approach to the analysis of a wide range of carbohydrates using microfluidics.  相似文献   

7.
A highly efficient and versatile method for DNA separation using Au nanoparticles (Au NPs) as a tag based on microchip capillary electrophoresis (MCE) was developed. The thiol-modified DNA-binding Au NPs were utilized as a tag. Target DNA was sandwiched between Au NPs and probe DNA labeled with horseradish peroxidase (HRP). In electrophoresis separation, the difference in electrophoretic mobility between free probe and probe-target complex was magnified by Au NPs, which enabled the resulting mixture to be separated with high efficiency by microchip capillary electrophoresis. Horseradish peroxidase was used as a catalytic label to achieve sensitive electrochemical DNA detection via fast catalytic reactions. With this protocol, 27-mer DNA fragments with different sequences were separated with high speed and high resolution. The proposed method was critical to achieve improved DNA separations in hybridization analyses.  相似文献   

8.
Qiao J  Qi L  Mu X  Chen Y 《The Analyst》2011,136(10):2077-2083
The study of enzyme immobilization using an extracorporeal shunt system is essential to eliminate the side effects of L-asparaginase (L-Asnase; including hepatic toxicity, allergic reaction, pancreatitis, central nervous system toxicity and decreased synthesis of blood clotting factors) when it was applied as an anticancer drug given directly to patients by injection. Thus, the novel monolith and coating enzymatic reactors of L-asparaginase were provided in this assay and a microchip electrophoresis-laser induced fluorescence (MCE-LIF) method was set up for the enzyme kinetics study. The enzymatic reactors would be a promising in vitro therapeutic method in an extracorporeal shunt system for acute lymphoblastic leukemia (ALL) treatment. For the first time, L-asparaginase was covalently bound to the polymer monolith and coating in the capillary and the activity characteristics of these enzymatic microreactors have been probed by Michaelis-Menten kinetic constants. Meanwhile, the D,L-amino acids were chirally separated using microchip electrophoresis with a laser induced detector and D,L-aspartic acid (D,L-Asp) were tested for the L-asparaginase enzymatic reactor kinetics study. Furthermore, human serum adding with L-asparagine (L-Asn) as the sample was hydrolyzed by the enzymatic microreactors. The results demonstrated that the developed enzymatic microreactor of L-asparaginase would be a potential therapeutic protocol for ALL treatment.  相似文献   

9.
Liu AL  Zhou T  He FY  Xu JJ  Lu Y  Chen HY  Xia XH 《Lab on a chip》2006,6(6):811-818
We firstly transformed the traditional Michaelis-Menten equation into an off-line form which can be used for evaluating the Michaelis-Menten constant after the enzymatic reaction. For experimental estimation of the kinetics of enzymatic reactions, we have developed a facile and effective method by integrating an enzyme microreactor into direct-printing polymer microchips. Strong nonspecific adsorption of proteins was utilized to effectively immobilize enzymes onto the microchannel wall, forming the integrated on-column enzyme microreactor in a microchip. The properties of the integrated enzyme microreactor were evaluated by using the enzymatic reaction of glucose oxidase (GOx) with its substrate glucose as a model system. The reaction product, hydrogen peroxide, was electrochemically (EC) analyzed using a Pt microelectrode. The data for enzyme kinetics using our off-line form of the Michaelis-Menten equation was obtained (K(m) = 2.64 mM), which is much smaller than that reported in solution (K(m) = 6.0 mM). Due to the hydrophobic property and the native mesoscopic structure of the poly(ethylene terephthalate) film, the immobilized enzyme in the microreactor shows good stability and bioactivity under the flowing conditions.  相似文献   

10.
A laboratory system for the on-line monitoring of important lactic acid fermentation variables is described. The system contains flow-injection analysers for glucose, lactose, galactose, lactate and protein and a continuous-flow analyser for the biomass concentration. The sugar and lactate analysers are based on enzymatic reactions involving oxidases followed by chemiluminescence detection of the hydrogen peroxide formed. The protein analyser is based on the biuret reaction. The system has been used to monitor many fermentation experiments, and some results are presented as examples.  相似文献   

11.
We report a discovery that personal glucose meters (PGMs) can give a dose‐dependent response to nicotinamide coenzymes, such as the reduced form of nicotinamide adenine dinucleotide (NADH). We have developed methods that take advantage of this discovery to perform one‐step homogeneous assays of many non‐glucose targets that are difficult to recognize by DNAzymes, aptamers, or antibodies, and without the need for conjugation and multiple steps of sample dilution, separation, or fluid manipulation. The methods are based on the target‐induced consumption or production of NADH through cascade enzymatic reactions. Simultaneous monitoring of the glucose and L ‐lactate levels in human plasma from patients with diabetes is demonstrated and the results are comparable to those from current standard test methods. Since a large number of commercially available enzymatic assay kits utilize NADH in their detection, this discovery will allow the transformation of almost all of these clinical lab tests into POC tests that use a PGM.  相似文献   

12.
一种可逆键合电泳微芯片的制作及在蛋白质分离中的应用   总被引:6,自引:0,他引:6  
阐述了一种可逆键合电泳微芯片的制作方法, 以及电泳微芯片在蛋白质分离、临床尿蛋白检测方面的应用. 用标准光刻腐蚀技术在石英基片上腐蚀泳道, 清洗腐蚀好的基片和盖片后, 在真空条件下实现键合. 此种方法键合制作的电泳微芯片可重复键合使用, 制得的电泳微芯片成功地用于标准蛋白质分离以及临床尿蛋白分析.  相似文献   

13.
In this contribution, the role of bioaffinity interactions on electrokinetically controlled microfabricated devices is reviewed. Interesting applications reported in the literature include enzymatic assays, where enzyme and enzyme inhibition kinetics were studied, often in combination with electrophoretic separation. Attention is paid towards developments that could lead to implementation of electrokinetically controlled microdevices in high-throughput screening. Furthermore, enzyme-facilitated detection in combination with electrophoretic separation on microdevices is discussed. Various types of immunoassays have been implemented on the microchip format. The selectivity of antibody-antigen interaction has been exploited for the detection of analytes in complex sample matrices as required, for example, in clinical chemistry. Binding kinetics as well as stoichiometry were studied in chip-based assays. Automated mixing protocols as well as the demonstration of a parallel immunoassay allow implementation of microdevices in high-throughput screening. Furthermore, demonstration of immunoassays on cheap polymeric microdevices opens the way towards the fabrication of disposable devices, a requirement for commercialization and therefore for application in routine analyses.  相似文献   

14.
Chen G  Wang J 《The Analyst》2004,129(6):507-511
A newly designed capillary electrophoresis (CE) microchip with a simple and efficient sample introduction interface is described. The sample introduction is carried out directly on the separation channel through a sharp inlet tip placed in the sample vial, without an injection cross, complex microchannel layouts or hardware modification. Alternate placement of the inlet tip in vials containing the sample and buffer solutions permits a volume defined electrokinetic sample introduction. Such fast and simple sample introduction leads to highly reproducible signals with no observable carry over between different analyte concentrations. The performance of the system was demonstrated in flow-injection and CE measurements of nitroaromatic explosives and for on-chip enzymatic assays of glucose in the presence of ascorbic acid. Employing an 8 cm long separation channel and a separation voltage of 4000 V it offers high-throughput flow-injection assays of 100 samples h(-1) with a relative standard deviation of 3.7% for TNT (n= 100). Factors influencing the analytical performance of the new microchip have been characterized and optimized. Such ability to continuously introduce discrete samples into micrometer channels indicates great promise for high-speed microchip analysis.  相似文献   

15.
应用电泳中介微分析(EMMA)技术,构建聚二甲基硅氧烷(PDMS)芯片自由酶反应器, 在线检测葡萄糖(Glu),在十字形的芯片通道上,采用自制的碳纤维微电极检测葡萄糖氧化酶(GOD)催化氧化Glu生成的H2O2,并对检测电位、GOD浓度、GOD进样时间、分离电压等参数进行了优化,测定了该自由酶反应器的线性范围和检出限,考察了其重现性及稳定性.结果表明,此自由酶反应器制作方便,操作简单,重现性好,Glu浓度在0.1~20 mmol/L之间有较好的线性关系(r=0.997),检出限为19.8 μmol/L(S/N=3).  相似文献   

16.
This review, as a continuation of an earlier report, gives an overview of recent developments, over the period from 2003 until now, in the use of capillary electrophoretic techniques for the in-line study of enzymatic reactions, derivatization, and chemical reactions. The article is divided into two parts: (i) in-line enzymatic reactions and (ii) in-line derivatization and chemical reactions. The first part introduces electrophoretically mediated microanalysis (EMMA) and discusses and illustrates the different modes of EMMA. A literature overview on enzymatic reactions is provided. The second part starts with an introduction of the procedures and the nomenclature used in the area of in-line derivatization and chemical reactions based on EMMA. Reported derivatization and chemical reaction procedures are discussed and summarized.  相似文献   

17.
We describe a programmable microfluidic system with onboard pumps and valves that has the ability to process reaction volumes in the sub-microlitre to hundred microlitre range. The flexibility of the architecture is demonstrated with a commercial molecular biology protocol for mRNA amplification, implemented without significant modification. The performance of the microchip system is compared to conventional bench processing at each stage of the multistep protocol, and DNA microarrays are used to assess the quality and performance of bench- and microchip-amplified RNA. The results show that the microchip system reactions are similar to bench control reactions at each step, and that the microchip- and bench-derived amplified RNAs are virtually indistinguishable in differential microarray analyses.  相似文献   

18.
This work presents a novel electrophoretic microchip design which is capable of directly coupling with flow-through analyzers for uninterrupted sampling. In this device, a 3 mm wide sampling channel (SC) was etched on quartz substrate to create the sample inlet and outlet and the 75 microm wide electrophoretic channels were also fabricated on the same substrate. Pressure was used to drive the sample flow through the external tube into the SC and the flow was then split into outlet and electrophoretic channels. A gating voltage was applied to the electrophoretic channel to control the sample loading for subsequent separations and inhibit the sample leakage. The minimum gating voltage required to inhibit the sample leakage depended on the solution buffer and increased with the hydrodynamic flow-rate. A fluorescent dye mixture containing Rhodamine B and Cy3 was introduced into the sample stream at either a continuous or discrete mode via an on-line injection valve and then separated and detected on the microchip using laser-induced fluorescence. For both modes, the relative standard deviation of migration time and peak intensity for consecutive injections was determined to be below 0.6 and 8%, respectively. Because the SC was kept floating, the external sampling equipment requires no electric connection. Therefore, such an electrophoresis-based microchip can be directly coupled with any pressure-driven flow analyzers without hardware modifications. To our best knowledge, this is something currently impossible for reported electrophoretic microchip designs.  相似文献   

19.
毛细管电泳微芯片在临床尿蛋白检测中的应用研究   总被引:5,自引:0,他引:5  
用微芯片毛细管电泳法对临床患者尿蛋白进行了分离, 初步探讨了用于判断肾损伤的应用前景. 以pH 10.3, 75 mmol•L-1的硼酸盐缓冲液作为芯片电泳缓冲体系, 利用蛋白质的紫外吸收特性, 在210 nm波段检测吸光度并进行信号收集和分析. 研究两种添加剂对提高尿蛋白分离效率的影响, 分析了肾病综合症、妊娠高血压症、风湿性心脏病和多发性骨髓瘤等患者尿样本, 并与美国Helena电泳系统分析结果对比, 得到了较一致的结果.  相似文献   

20.
The surface properties of microfluidic devices play an important role in their flow behavior. We report here on an effective control of the surface chemistry and performance of polymeric microchips through a bulk modification route during the fabrication process. The new protocol is based on modification of the bulk microchip material by tailored copolymerization of monomers during atmospheric-pressure molding. A judicious addition of a modifier to the primary monomer solution thus imparts attractive properties to the plastic microchip substrate, including significant enhancement and/or modulation of the EOF (with flow velocities comparable to those of glass), a strong pH sensitivity and high stability. Carboxy, sulfo, and amino moieties have thus been introduced (through the incorporation of methylacrylic acid, 2-sulfoethyl-methacrylate and 2-aminoethyl-methacrylate monomers, respectively). A strong increase in the electroosmotic pumping compared to the native poly(methylmethacrylate)(PMMA) microchip (ca. electroosmotic mobility increases from 2.12 to 4.30 x 10(-4) cm(2) V(-1) s(-1)) is observed using a 6% methylacrylate (MAA) modified PMMA microchip. A 3% aminoethyl modified PMMA microchip exhibits a reversal of the electroosmotic mobility (for example, -5.6 x 10(-4) cm(2) V(-1) s(-1) at pH 3.0). The effects of the modifier loading and the pH on the EOF have been investigated for the MAA-modified PMMA chips. The bulk-modified devices exhibit reproducible and stable EOF behavior. The one step fabrication/modification protocol should further facilitate the widespread production of high-performance plastic microchip devices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号