首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
通过N-丙烯酰-1,2-乙二胺盐酸盐(ADE)的Michael加成反应制备阳离子超支化低聚物聚N-丙烯酰-1,2-乙二胺盐酸盐(HADE),以HADE为大分子单体,以丙烯酰胺(AAm)和丙烯酸(AAc)为单体,在无需外加有机交联剂的条件下制备具有高机械强度的两性聚电解质水凝胶(HAH凝胶).结果表明,HAH凝胶可以被压缩超过99%的形变而不断裂,压缩强度高达61.2 MPa;HAH凝胶的断裂伸长率和断裂强度分别达到1700%和70.2 k Pa.由于HADE末端伯胺基与强氧化引发剂通过氧化还原反应生成胺自由基和自身结构中的双键同时参与聚合反应,因而为凝胶网络形成提供了必要的化学交联作用.同时HADE结构中胺基正电荷与AAc的羧基负电荷之间的离子交联也为凝胶网络提供了物理交联作用.2种交联作用的协同作用是HAH凝胶具有良好机械性能的根本原因.  相似文献   

2.
辐射交联制备改性CMC水凝胶的溶胀行为研究   总被引:10,自引:0,他引:10  
利用丙烯酰胺 (AAm)接枝改性纤维素 ,然后进行羧甲基化反应得到高取代度的丙烯酰胺 羧甲基纤维素钠 (AAm CMC Na) .对该材料进行γ射线辐照制备出新型改性CMC水凝胶 .研究了这种水凝胶的溶胀动力学、交联动力学以及温度、pH值和无机盐浓度对水凝胶溶胀行为的影响 ,并与CMC Na水凝胶进行了比较 .结果表明 ,该水凝胶和CMC Na水凝胶相比 ,优点在于辐照交联所用的剂量下降 ,而且所需的CMC浓度减少 .AAm CMC Na水凝胶的溶胀度随温度升高而增大 ,在pH为 6~ 8范围内达到最大值 ,并随无机盐浓度与吸收剂量增加而下降 ,表现出较好的温度敏感性和pH敏感性 ,可望作为吸水材料和水保持剂  相似文献   

3.
以丙烯酸(AA)、丙烯酰胺(AM)为单体,K2S2O8为引发剂,N,N'-亚甲基双丙烯酰胺为交联剂,采用水溶液聚合法合成P(AA-AM)水凝胶,通过正交实验优化了P(AA-AM)水凝胶的制备工艺.对制备的P (AA-AM)水凝胶进行了SEM和XPS分析,探讨了P(AA-AM)水凝胶对Cu2+、pb2+、Zn2+和Cd2+的吸附等温线和吸附动力学行为,研究了P(AA-AM)水凝胶的粒径、吸附温度、pH值和重金属离子的初始浓度对P(AA-AM)水凝胶吸附性能的影响.实验结果表明,所制备的P(AA-AM)水凝胶是一种具有三维网络结构的高分子材料,其表面的氨基和羧基残基能够与重金属离子发生螯合反应.减小P(AA-AM)水凝胶粒径、增大溶液pH值、升高吸附环境温度均有利于吸附反应的进行.粒径为0.097 ~0.15 mm的P(AA-AM)水凝胶粉末,在35℃、pH=5的条件下进行吸附等温线实验,得到水凝胶对重金属Cu2+,pb2+,Zn2+和Cd2+的理论最大吸附量分别为186,588,208和403 mg/g.P(AA-AM)水凝胶对重金属离子的吸附符合准二级动力学模型(R2>0.98),吸附等温线符合Langmuir吸附等温线(R2>0.95).干扰离子实验和理论模拟均证明P(AA-AM)水凝胶对pb2+具有良好的吸附性.  相似文献   

4.
本文通过酸解法制备纳米纤维素(nCE),再利用自由基聚合法将甲基丙烯酸(MAA)接枝到纳米纤维素上,得到含有多孔结构的纤维素基水凝胶,并以制备的水凝胶作为吸附剂处理染料废水。用傅里叶变换红外光谱仪(FTIR)、和扫描电镜(SEM)技术对其进行了表征。讨论了吸附时间、pH、染料初始浓度、吸附剂用量对染料去除率的影响,优化了吸附条件。并对吸附机理进行了探讨,吸附动力学符合准二级动力学模型,平衡吸附等温线与Langmuir吸附等温方程拟合。通过对吸附等温线的拟合,计算得到了吸附剂对亚甲基蓝(MB)的最大吸附量为1250.00 mg·g~(-1)。  相似文献   

5.
采用泡沫分散聚合法,以饱和Na2CO3水溶液为发泡剂,过硫酸铵(APS)及NaHSO3为引发剂,N,N′-亚甲基双丙烯酰胺(MBA)为交联剂,聚(氧化乙烯/氧化丙烯)(PF127)为泡沫稳定剂,丙烯酸(AA)和丙烯酰胺(AM)为单体,聚乙烯醇(PVA)为第二网络,制备超大孔半互穿水凝胶P(AA-co-AM)/PVA,并研究其对阳离子兰染料的吸附性能。研究表明,P(AA-co-AM)/PVA具有相互贯穿的超大孔结构;当n(AM):n(AA)=1.5:1,w(PVA)=1.6%时凝胶的平衡溶胀度达186.56g/g;凝胶具有很好的离子响应性,在蒸馏水中的平衡溶胀度为129.16g/g时,在0.1mol/L NaCl溶液中只有31.07g/g;对阳离子兰染料溶液的脱色率达92.17%,吸附容量达17.16mg/g。  相似文献   

6.
以聚乙二醇6000为成孔剂,由自由基引发N-异丙基丙烯酰胺(NIPA)和丙烯酸(AAc)共聚交联得到大孔凝胶,研究了凝胶对环境温度的响应性能.在凝胶制备过程中,PEG6000分子充当成孔剂,得到的凝胶具有大孔结构.这种大孔结构有利于水分子的进出,大孔凝胶对温度变化有较快的响应速率.增加亲水单体AAc的含量,凝胶的LCST有所升高,凝胶的亲水性增强,在较低温度下凝胶的溶胀率也随之升高.振荡实验表明,所得的大孔凝胶具有反复使用的能力.  相似文献   

7.
一步法制备聚脲多孔材料及其对染料的吸附   总被引:2,自引:0,他引:2  
以甲苯二异氰酸酯为单体, 在水和丙酮混合溶剂中不用致孔剂且无需任何高分子改性一步法合成了聚脲多孔材料(PPU), 通过扫描电镜和BET氮气吸附法对其表面形貌和孔参数进行了表征. 以酸品红(AF)溶液模拟染料废水, 对其在PPU上的吸附进行了研究, 讨论了pH、 吸附时间、 AF初始浓度及吸附剂用量对吸附过程的影响, 优化了吸附条件. 结果表明, PPU对染料AF具有优异的吸附效果. PPU在30℃, pH=3时对AF的最大吸附量为44.60 mg/g. PPU对AF的吸附过程更接近于Langmuir等温吸附的单分子层吸附机理. PPU对水溶性染料刚果红(CR)也有很好的吸附能力. 使用水、 乙醇和水混合溶剂以及NaOH水溶液对染料吸附后的解吸附结果表明, 乙醇和水混合溶剂对吸附染料的解吸效率最高, 对2种染料的解吸附都达90%以上. 解吸后PPU的再吸附能力略有下降, 但第三次吸附量仍达到首次吸附的80%以上.  相似文献   

8.
染料在纳米TiO2薄膜表面吸附性能的研究   总被引:11,自引:0,他引:11  
采用溶胶-凝胶法制备纳米TiO2薄膜,并通过吸附染料形成染料/TiO2复合薄膜。分析了染料与TiO2薄膜的相互关系,利用紫外可见、比表面等技术研究染料在纳米TiO2薄膜表面的吸附性能,并计算出TiO2薄膜对染料的最大吸附率。研究表明,染料溶液浓度、温度以及TiO2薄膜浸泡时间对染料吸附量有着显著的影响,染料的吸附性能直接影响着太阳能电池的光电转换效率。  相似文献   

9.
以2-丙烯酰胺基-2-甲基丙磺酸(AMPS)、N,N-二甲基丙烯酰胺(DMAA)为单体,通过水溶液聚合法制备P(AMPS-co-DMAA)凝胶。用红外光谱(FT-IR)和扫描电子显微镜(SEM)等对凝胶的结构进行表征。研究单体配比、交联剂用量、AgNO_3初始浓度对Ag~+吸附性能的影响,结果表明,当n(DMAA):n(AMPS)=4:1,交联剂用量为1.6%,AgNO_3浓度为0.03mol/L时,凝胶最大吸附容量为240mg/g。同时探讨凝胶的吸附动力学,结果表明,准二级动力学模型符合凝胶的吸附动力学,内扩散不是控制吸附过程的唯一步骤。  相似文献   

10.
以β-环糊精(β-CD)、聚乙烯醇(PVA)、丙烯酸(AA)为单体,过硫酸铵(APS)为引发剂,采用水溶液聚合法合成β-环糊精/聚乙烯醇/丙烯酸(β-CD/PVA/PAA)水凝胶。采用SEM、FT-IR和XRD对所制备的水凝胶进行分析,考察了外界环境因素对β-CD/PVA/PAA水凝胶吸附性能的影响,探讨了β-CD/PVA/PAA水凝胶对左氧氟沙星(LEV)的吸附动力学和吸附热力学行为。结果表明,所制备的β-CD/PVA/PAA水凝胶具有清晰的三维网络多孔结构;降低LEV溶液的pH值和吸附反应温度有利于β-CD/PVA/PAA水凝胶对LEV吸附反应的进行;干扰离子(Na+、Mg2+、Al3+)的存在会在不同程度上影响β-CD/PVA/PAA水凝胶对LEV的吸附。β-CD/PVA/PAA水凝胶对LEV的吸附动力学过程符合准二级反应动力学模型(R2>0.9885、25℃时),边界层扩散和颗粒内扩散过程是整个吸附过程的主要控速步骤,吸附过程主要为化学吸附;与Langmuir和Temkin吸附等温模型...  相似文献   

11.

Acrylamide (AAm)/Acrylic Acid (AAc) copolymers have been prepared by gamma irradiation of binary mixtures at three different compositions where the acrylamide/acrylic acid mole ratios varied around 15, 20, and 30%. Threshold dose for 100% conversion of monomers into hydrogels was found to be 8.0 kGy. Poly(Acrylamide‐co‐Acrylic Acid) (poly(AAm‐co‐AAc)) hydrogels have been considered for the removal of uranyl ions from aqueous solutions. Swelling behavior of these hydrogels was determined in distilled water at different pH values and in aqueous solutions of uranyl ions. The results of swelling tests at pH 8.0 indicated that poly(AAm‐co‐AAc) hydrogel, containing 15% acrylamide showed maximum % swelling. Diffusion of water and aqueous solutions of uranyl ion into hydrogels was found to be non‐Fickian in character and their diffusion coefficients were calculated. The effect of pH, composition of hydrogel, and concentration of uranyl ions on the adsorption process were studied at room temperature. It was found that one gram of dry poly(AAm‐co‐AAc) hydrogel adsorbed 70–320 mg and 70–400 mg uranyl ions from aqueous solutions of uranyl nitrate and uranyl acetate in the initial concentration range of 50–1500 mg UO2 2+L?, depending on the amount of AAc in the hydrogels, respectively. Adsorption isotherms were constructed for poly(AAm‐co‐AAc)–uranyl ion system indicating an S type of adsorption in the Giles classification system. It is concluded that crosslinked poly(AAm‐co‐AAc) hydrogels can be successfully used for the removal of uranyl ions from their aqueous solutions.  相似文献   

12.
《European Polymer Journal》2002,38(11):2133-2141
Superswelling acrylamide (AAm)/maleic acid (MA) hydrogels were prepared by free radical polymerization in aqueous solution of AAm with MA as comonomer with some multifunctional crosslinkers such as trimethylolpropane triacrylate and 1,4-butanediol dimethacrylate. AAm/MA hydrogels were used in experiments on swelling and adsorption of a water-soluble monovalent cationic dye such as Basic Blue 17 (Toluidin Blue). As a result of dynamic swelling tests, the influence of relative content of MA on the swelling properties of the hydrogel systems was examined. AAm/MA hydrogels were swollen in the range 1660-6050% in water, while AAm hydrogels swelled in the range 780-1360%. Equilibrium water content of AAm/MA hydrogels were calculated in the range 0.8873-0.9837. Water intake of hydrogels followed a non-Fickian type diffusion. The uptake of the cationic dye, BB-17 to AAm/MA hydrogels is studied by batch adsorption technique at 25 °C. In the experiments of the adsorption equilibrium, S-type adsorption in Giles's classification system was found. The binding ratio of hydrogel/dye systems was gradually increased with the increase of MA content in the AAm/MA hydrogels.  相似文献   

13.
In this study, (sodium alginate (NaAlg)/acrylamide (AAm)) interpenetrating polymer networks (IPN) have been prepared at three different compositions, where the sodium alginate composition varies 1, 2, and 3% (w/v) in 50% (w/v) acrylamide solutions. These solutions have been irradiated with a 60Co‐γ source at different doses. The percent conversion was determined gravimetrically and 100% gelation was achieved at the 10.0 kGy dose. The swelling results at pH 7.0 and 9.0 indicated that (NaAlg/AAm)3IPN hydrogel, containing 3% NaAlg showed maximum % swelling in water, with swelling increasing in the order of Ni2+>Cd2+>Pb2+. Diffusion in aqueous solutions of metal ions within (NaAlg/AAm)IPN hydrogels was found to be Fickian character. Diffusion coefficients of (NaAlg/AAm)IPN hydrogels in water and aqueous solutions of metal ions were calculated. The maximum weight loss temperature and half life temperature for NaAlg, PAAm, (NaAlg/AAm)IPN and (NaAlg/AAm)IPN‐metal ion systems were found from thermal analysis studies. In the adsorption experiments, the efficiency of (NaAlg/AAm)IPN hydrogels to adsorb nickel, cadmium and lead ions from water was studied. (NaAlg/AAm)IPN hydrogels showed different adsorption for different aqueous solution of metal ion at pH 7.0. Adsorption isotherms were constructed for the (NaAlg/AAm)IPN‐metal ion systems. S type adsorption in the Giles classification system was found.  相似文献   

14.
In this study, acrylamide (AAm)/aconitic acid (ACA) copolymers were prepared with two different mol% of aconitic acid 4%, 17% and were irradiated with gamma irradiation at different irradiation doses (4 - 25kGy). The percent yield was assigned by gravimetrical method. The effect of irradiation dose, pH and involved amounts of monomers (AAm/ACA) in hydrogels on swelling properties were investigated. The conversion of monomers to hydrogels was 100% at 25kGy. Poly(acrylamide-co-aconitic acid) P(AAm/ACA) hydrogels have been used for the adsorption of some aqueous solutions of dyes such as Methylene Blue (MB) and Safranine-O (S). The hydrogels were swollen in distilled water at pH 3, 5, 7, 8 and in aqueous solutions of dyes. The initial swelling rates of hydrogels are increased by increasing of pH. The effects of concentration of the aqueous solutions of dye and hydrogel composition on the adsorption were investigated. The adsorption is increased and changed depending on the structure of dye and composition of hydrogel.  相似文献   

15.
Poly(N-vinyl-2-pyrrolidone)/(acrylic acid-co-styrene) [PVP/(AAc-co-Sty)] hydrogels were prepared by γ-irradiation to design as adsorptive systems. The adsorption of agricultural pesticides Fluometuron (FH), Thiophanate Methyl (TF) and Trifluralin (TI) on radiation-induced graft copolymeric adsorbents has been studied. The prepared hydrogels were characterized by FT-IR spectroscopy, scanning electron microscopy (SEM), and the thermal properties were studied by using thermal gravimetric analysis (TGA) and Differential scanning calorimetry (DSC). The ionic character of the prepared hydrogel was improved by treatment with alkaline (NaOH), sulfonation (Sf) and alkaline/sulfonation (NaOH/Sf). The swelling as a function of PVP concentration, AAc/Sty composition, irradiation dose, temperature and pH were studies. The adsorption of pesticides on the hydrogel matrix under different conditions was studied to determine which factors have the most affect and control the adsorption capacity of hydrogel. AAc/Sty composition, type of pesticide, temperature, concentration and pH of pesticide feed solution are greatly affect the pesticide uptake. It was found that the prepared hydrogels have a great efficiency to recover the pesticides from their solutions, the maximum pesticide uptake was found to be in the sequence: TI > TF > FH. The results concluded that the alkaline/sulfonation- treated PVP/(AAc-co-Sty) hydrogels possess high efficiency for removal of pesticides.  相似文献   

16.
New ternary semi interpenetrating polymer networks (semi‐IPNs) systems containing acrylamide (AAm), 1‐vinylimidazole (VI) and poly (ethylene glycol) (PEG) have been prepared. AAm/VI hydrogels and semi‐IPN's, poly (AAm/VI/PEG) with 0.25, 0.50, 0.75 and 1.00 g of PEG (per 1.00 g AAm) were prepared by free radical solution polymerization in aqueous solution of AAm with VI as comonomer and a multifunctional crosslinker such as 1,4 butanediol dimethacrylate (BDMA). Swelling experiments were performed in water at 25°C, gravimetrically. The influence of VI and PEG content in hydrogels were examined. AAm/VI and AAm/VI/PEG hydrogels showed large extents of swelling in aqueous media, the swelling being highly dependent on the chemical composition of the hydrogels. Percentage swelling ratio of AAm/VI hydrogels and AAm/VI/PEG hydrogels was shown as 650–4167%. The values of equilibrium water content (EWC) of the hydrogels are between 0.8990 and 0.9750. Diffusion behavior was investigated. Water diffusion into hydrogels was found to be non‐Fickian in character. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

17.
Acrylamide/itaconic acid (AAm/IA) hydrogels containing different quantities of itaconic acid have been irradiated with γ radiation. The hydrogels were used in an experiment concerning the adsorption of cationic dyes such as Basic Blue 9, Basic Violet 1 and Basic Blue 12. In the experiments of the adsorption of dyes from their synthetic aqueous solutions, type S adsorption isotherms were found. One mole of monomeric unit of AAm/IA hydrogels adsorbed 78.5–513.1 μmole of Basic Blue 9, 60.2–641.1 μmole of Basic Violet 1 and, 28.8–593.3 μmole of Basic Blue 12, while acrylamide hydrogel did not adsorb any cationic dye. As a result, it was shown that the AAm/IA hydrogels could be used as an adsorbent for water pollutants such as dyes, and immobilization of these organic contaminants in the hydrogels from waste water can solve one of the most important environmental problems of the textile industry. © 1997 John Wiley & Sons, Ltd.  相似文献   

18.
The effects of external stimuli such as pH of the buffer solution, ionic strength, temperature and the amount of poly-electrolyte monomer in the hydrogel system on the Bovine Serum Albumin (BSA) adsorption capacity of poly(acrylamide/maleic acid) [P(AAm/MA)] hydrogels were investigated. Poly-electrolyte P(AAm/MA) hydrogels with varying compositions were prepared by irradiating acrylamide/maleic acid/water mixtures with γ rays at ambient temperature. Langmuir type adsorption isotherms were observed for all prepared hydrogels. Increase of ionic strength of the buffer solution from 0.01 to 0.1 mol dm−3 decreased the adsorption capacity of hydrogels and zero adsorption was observed in the presence of 0.1 mol dm−3 Na+ and Ca2+ ion in the adsorption medium. The adsorption capacity of hydrogels was found to increase from 0 to 120 mg BSA/g dry gel, by changing external stimuli and hydrogel composition.  相似文献   

19.
In this work, we report a series of poly(itaconic acid‐co‐acrylic acid‐co‐acrylamide) (poly(IA‐co‐AAc‐co‐AAm)) hydrogels via frontal polymerization (FP). FP starts on the top of the reaction mixture with aid of heating provided from soldering iron gun. Once polymerization initiated, no further energy is required to complete the process. The influences of IA/AAc weight ratios on frontal velocities, temperatures, and conversions on the reaction time are thoroughly investigated and discussed where the amount of AAm monomer remains constant. Fourier transform‐infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), scanning electron microscope (SEM), dynamic mechanical analysis, and the swelling measurement are applied to characterize the as‐synthesized poly(IA‐co‐AAc‐co‐AAm) hydrogels. Interestingly, the swelling ratios of the hydrogels are changed with different IA/AAc contents, and the maximum swelling ratios are ~4439% in water. SEM images describe highly porous morphologies and explain good swelling capabilities. Moreover, the poly(IA‐co‐AAc‐co‐AAm) hydrogels exhibit superior pH‐responsive ability. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019 , 57, 2214–2221  相似文献   

20.
Copolymer network hydrogels were prepared by gamma irradiation of aqueous solutions of poly(vinyl pyrrolidone) (PVP) and acrylic acid monomer (AAc). The composition of the final hydrogels compared to the composition of the initial preparation solutions of hydrogels was determined. The chemical structure and nature of bonding was characterized by IR spectroscopy analysis, while the thermal durability of the prepared hydrogels was assessed by thermogravimetric analysis (TGA). The kinetic swelling in water and the pH-sensitivity of PVP/AAc copolymer hydrogels was studied. The drug release properties of PVP/AAc hydrogels taking methyl orange indicator as a drug model was investigated. The IR spectra indicate the formation of copolymer networks, whereas the TGA study showed that the PVP/AAc hydrogels possess higher thermal stability than pure PAAc and lower than PVP hydrogels. The kinetic swelling in water showed that all the hydrogels reached equilibrium after 24 h and that the degree of swelling increases with increasing the ratio of AAc in the initial feeding solutions. It was found that the degree of swelling of PVP/AAc hydrogels increases greatly within the pH range 4-7 depending on composition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号