首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
It is a challenge to retain the high stretchability of an elastomer when used in polymer composites. Likewise, the high conductivity of organic conductors is typically compromised when used as filler in composite systems. Here, it is possible to achieve elastomeric fiber composites with high electrical conductivity at relatively low loading of the conductor and, more importantly, to attain mechanical properties that are useful in strain‐sensing applications. The preparation of homogenous composite formulations from poly­urethane (PU) and poly(3,4‐ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) that are also processable by fiber wet‐spinning techniques are systematically evaluated. With increasing PEDOT:PSS loading in the fiber composites, the Young's modulus increases exponentially and the yield stress increases linearly. A model describing the effects of the reversible and irreversible deformations as a result of the re‐arrangement of PEDOT:PSS filler networks within PU and how this relates to the electromechanical properties of the fibers during the tensile and cyclic stretching is presented.  相似文献   

3.
4.
Photocatalyst sheets consisting of H2 evolution photocatalyst (HEP) and O2 evolution photocatalyst (OEP) particles applied to an underlying conductive layer show promise with regard to promoting efficient and scalable water splitting. One of the most important challenges in enhancing the performance of such systems is establishing efficient charge transfer between photocatalyst particles that are often thickly stacked on the conductive layer. In this study, reduced graphene oxide (RGO) is investigated as an additional solid mediator to the conductive layer to bridge particulate photocatalysts and thus ensure effective charge transfer. Photocatalyst sheets made of RhCrOx/LaMg1/3Ta2/3O2N as the HEP and BiVO4:Mo as the OEP are applied to an Au layer together with RGO. The activity of this system is 3.5 times greater following the incorporation of the RGO. Charaterization analyses reveal that RhCrOx/LaMg1/3Ta2/3O2N particles tens of nanometers in size are fixed on larger, micrometer‐sized, BiVO4:Mo particles by RGO photoreduced from GO in situ. The RGO facilitates charge transfer between particles that are distant from the underlying Au layer and thus involves more photocatalyst particles in the water splitting reaction. It is concluded that the incorporation of conductive materials into the photocatalyst particle layer can effectively enhance the water splitting activity of photocatalyst sheets.  相似文献   

5.
The regeneration of artificial bone substitutes is a potential strategy for repairing bone defects. However, the development of substitutes with appropriate osteoinductivity and physiochemical properties, such as water uptake and retention, mechanical properties, and biodegradation, remains challenging. Therefore, there is a motivation to develop new synthetic grafts that possess good biocompatibility, physiochemical properties, and osteoinductivity. Here, we fabricate a biocompatible scaffold through the covalent crosslinking of graphene oxide (GO) and carboxymethyl chitosan (CMC). The resulting GO‐CMC scaffold shows significant high water retention (44% water loss) compared with unmodified CMC scaffolds (120% water loss) due to a steric hindrance effect. The modulus and hardness of the GO‐CMC scaffold are 2.75‐ and 3.51‐fold higher, respectively, than those of the CMC scaffold. Furthermore, the osteoinductivity of the GO‐CMC scaffold is enhanced due to the π–π stacking interactions of the GO sheets, which result in striking upregulation of osteogenesis‐related genes, including osteopontin, bone sialoprotein, osterix, osteocalcin, and alkaline phosphatase. Finally, the GO‐CMC scaffold exhibits excellent reparative effects in repairing rat calvarial defects via the synergistic effects of GO and bone morphogenetic protein‐2. This study provides new insights for developing bone substitutes for tissue engineering and regenerative medicine.  相似文献   

6.
A composite material made of graphene nanoribbons and iron oxide nanoparticles provides a remarkable route to lithium‐ion battery anode with high specific capacity and cycle stability. At a rate of 100 mA/g, the material exhibits a high discharge capacity of ~910 mAh/g after 134 cycles, which is >90% of the theoretical li‐ion storage capacity of iron oxide. Carbon black, carbon nanotubes, and graphene flakes have been employed by researchers to achieve conductivity and stability in lithium‐ion electrode materials. Herein, the use of graphene nanoribbons as a conductive platform on which iron oxide nanoparticles are formed combines the advantages of long carbon nanotubes and flat graphene surfaces. The high capacity over prolonged cycling achieved is due to the synergy between an electrically percolating networks of conductive graphene nanoribbons and the high lithium‐ion storage capability of iron oxide nanoparticles.  相似文献   

7.
NiO nanoflakes are created with a simple hydrothermal method on 3D (three‐dimensional) graphene scaffolds grown on Ni foams by microwave plasma enhanced chemical vapor deposition (MPCVD). Such as‐grown NiO‐3D graphene hierarchical composites are then applied as monolithic electrodes for a pseudo‐supercapacitor application without needing binders or metal‐based current collectors. Electrochemical measurements impart that the hierarchical NiO‐3D graphene composite delivers a high specific capacitance of ≈1829 F g?1 at a current density of 3 A g?1 (the theoretical capacitance of NiO is 2584 F g?1). Furthermore, a full‐cell is realized with an energy density of 138 Wh kg?1 at a power density of 5.25 kW kg?1, which is much superior to commercial ones as well as reported devices in asymmetric capacitors of NiO. More attractively, this asymmetric supercapacitor exhibits capacitance retention of 85% after 5000 cycles relative to the initial value of the 1st cycle.  相似文献   

8.
TiO2 nanorods are self‐assembled on the graphene oxide (GO) sheets at the water/toluene interface. The self‐assembled GO–TiO2 nanorod composites (GO–TiO2 NRCs) can be dispersed in water. The effective anchoring of TiO2 nanorods on the whole GO sheets is confirmed by transmission electron microscopy (TEM), X‐ray diffraction (XRD), Fourier transform IR spectroscopy (FTIR), and thermogravimetric analysis (TGA). The significant increase of photocatalytic activity is confirmed by the degradation of methylene blue (MB) under UV light irridiation. The large enhancement of photocatalytic activity is caused by the effective charge anti‐recombination and the effective absorption of MB on GO. The effective charge transfer from TiO2 to GO sheets is confirmed by the significant photoluminescence quenching of TiO2 nanorods, which can effectively prevent the charge recombination during photocatalytic process. The effective absorption of MB on GO is confirmed by the UV‐vis spectra. The degradation rate of MB in the second cycle is faster than that in the first cycle because of the reduction of GO under UV light irradiation.  相似文献   

9.
Engineering of controlled hybrid nanocomposites creates one of the most exciting applications in the fields of energy materials and environmental science. The rational design and in situ synthesis of hierarchical porous nanocomposite sheets of nitrogen‐doped graphene oxide (NGO) and nickel sulfide (Ni7S6) derived from a hybrid of a well‐known nickel‐based metal‐organic framework (NiMOF‐74) using thiourea as a sulfur source are reported here. The nanoporous NGO/MOF composite is prepared through a solvothermal process in which Ni(II) metal centers of the MOF structure are chelated with nitrogen and oxygen functional groups of NGO. NGO/Ni7S6 exhibits bifunctional activity, capable of catalyzing both the hydrogen evolution reaction (HER) and the oxygen evolution reaction (OER) with excellent stability in alkaline electrolytes, due to its high surface area, high pore volume, and tailored reaction interface enabling the availability of active nickel sites, mass transport, and gas release. Depending on the nitrogen doping level, the properties of graphene oxide can be tuned toward, e.g., enhanced stability of the composite compared to commonly used RuO2 under OER conditions. Hence, this work opens the door for the development of effective OER/HER electrocatalysts based on hierarchical porous graphene oxide composites with metal chalcogenides, which may replace expensive commercial catalysts such as RuO2 and IrO2.  相似文献   

10.
A novel process is developed to synthesize graphene oxide sheets with an ultralarge size based on a solution‐phase method involving pre‐exfoliation of graphite flakes. Spontaneous formation of lyotropic nematic liquid crystals is identified upon the addition of the ultralarge graphene oxide sheets in water above a critical concentration of about 0.1 wt%. It is the lowest filler content ever reported for the formation of liquid crystals from any colloid, arising mainly from the ultrahigh aspect ratio of the graphene oxide sheets of over 30 000. It is proposed that the self‐assembled brick‐like graphene oxide nanostructure can be applied in many areas, such as energy‐storage devices and nanocomposites with a high degree of orientation.  相似文献   

11.
A self‐assembled GeOx/reduced graphene oxide (GeOx/RGO) composite, where GeOx nanoparticles are grown directly on reduced graphene oxide sheets, is synthesized via a facile one‐step reduction approach and studied by X‐ray diffraction, transmission electron microscopy, energy dispersive X‐ray spectroscopy, electron energy loss spectroscopy elemental mapping, and other techniques. Electrochemical evaluation indicates that incorporation of reduced graphene oxide enhances both the rate capability and reversible capacity of GeOx, with the latter being due to the RGO enabling reversible utilization of Li2O. The composite delivers a high reversible capacity of 1600 mAh g?1 at a current density of 100 mA g?1, and still maintains a capacity of 410 mAh g?1 at a high current density of 20 A g?1. Owing to the flexible reduced graphene oxide sheets enwrapping the GeOx particles, the cycling stability of the composite is also improved significantly. To further demonstrate its feasibility in practical applications, the synthesized GeOx/RGO composite anode is successfully paired with a high voltage LiNi0.5Mn1.5O4 cathode to form a full cell, which shows good cycling and rate performance.  相似文献   

12.
The sensing performance of chemical sensors can be achieved not only by modification or hybridization of sensing materials but also through new design in device geometry. The performance of a chemical sensing device can be enhenced from a simple three‐dimensional (3D) chemiresistor‐based gas sensor platform with an increased surface area by forming networked, self‐assembled reduced graphene oxide (R‐GO) nanosheets on 3D SU8 micro‐pillar arrays. The 3D R‐GO sensor is highly responsive to low concentration of ammonia (NH3) and nitrogen dioxide (NO2) diluted in dry air at room temperature. Compared to the two‐dimensional planar R‐GO sensor structure, as the result of the increase in sensing area and interaction cross‐section of R‐GO on the same device area, the 3D R‐GO gas sensors show improved sensing performance with faster response (about 2%/s exposure), higher sensitivity, and even a possibly lower limit of detection towards NH3 at room temperature.  相似文献   

13.
Key points in the formation of liquid crystalline (LC) dispersions of graphene oxide (GO) and their processability via wet‐spinning to produce long lengths of micrometer‐dimensional fibers and yarns are addressed. Based on rheological and polarized optical microscopy investigations, a rational relation between GO sheet size and polydispersity, concentration, liquid crystallinity, and spinnability is proposed, leading to an understanding of lyotropic LC behavior and fiber spinnability. The knowledge gained from the straightforward formulation of LC GO “inks” in a range of processable concentrations enables the spinning of continuous conducting, strong, and robust fibers at concentrations as low as 0.075 wt%, eliminating the need for relatively concentrated spinning dope dispersions. The dilute LC GO dispersion is proven to be suitable for fiber spinning using a number of coagulation strategies, including non‐solvent precipitation, dispersion destabilization, ionic cross‐linking, and polyelectrolyte complexation. One‐step continuous spinning of graphene fibers and yarns is introduced for the first time by in situ spinning of LC GO in basic coagulation baths (i.e., NaOH or KOH), eliminating the need for post‐treatment processes. The thermal conductivity of these graphene fibers is found to be much higher than polycrystalline graphite and other types of 3D carbon based materials.  相似文献   

14.
15.
The electronic structure and chemical bonding of three differently prepared samples of graphene oxide paper‐like sheets are studied. Two are created by water filtration of fully oxidized graphene sheets, although one is later intercalated with dodecylamine. The third is created by reducing graphene oxide with hydrazine hydrate. The spectroscopic fingerprints of the aligned epoxide functional groups that unzip the carbon basal plane are found. This unzipping appears to be a result of aging, and the extent to which the basal plane is unzipped can be controlled via the preparation method. In particular, reduction with hydrazine enhances line defect formation, whereas intercalation inhibits the process.The hydroxyl functional group also has a tendency to gather in zones of dense oxidation on the carbon basal plane, a predilection that is not shared by the other prominent functional group species. Finally, the non‐functionalized carbon sites exhibit very similar bonding despite the increase in the sp2/sp3 ratio, confirming that reduction alone is insufficient for producing pristine graphene from graphene oxide. These results are obtained by directly probing the electronic structure of the graphene oxide samples via X‐ray absorption near‐edge structure spectroscopy (XANES) and resonant X‐ray emission spectroscopy (RXES). This work has important significance for the development of graphene oxide as a band gap‐engineered electronic material, as preparation methodology strongly affects not only the initial condition of the sample, but how the electronic structure evolves over time.  相似文献   

16.
On-body strain information provides various indicators such as heart rate, physiological pulse, voice waveform, respiratory rate, and body motion status. Recent advances in wearable strain sensors using nanomaterials have significantly enhanced sensor performance with regard to sensitivity, detectable range, and response time. However, it is still challenging to obtain all types of body strain information, from small vibrations to joint movements, using one type of sensor. Herein, a full-range on-body strain (FROS) sensor covering ultrasmall-to-large strains such as vocal vibration and joint movement is reported. To achieve an ultrawide detectable range, reduced graphene oxide (rGO)-embedded laser-induced graphene (LIG) is synthesized by laser engraving on a graphene oxide (GO)-embedded polyimide (PI) complex film. An rGO-LIG homostructure based on sp2-carbons is photothermally reconstructed from the GO-PI heterostructure in a complex film by in situ co-transformation and then transferred to an elastomer substrate. The fabricated FROS sensor successfully performs on-body strain monitoring of various indicators, such as physiological pulse, vocal sound waveform, and body movement, as well as American sign language translation. Furthermore, it is believed that this rGO-LIG homostructure-based material synthesized by in situ co-transformation can potentially provide novel functionalities in fields such as wearable electronics, humanoid, soft robotics, and intelligent prosthetics.  相似文献   

17.
Graphene oxide (GO) papers are candidates for structural materials in modern technology due to their high specific strength and stiffness. The relationship between their mechanical properties and structure needs to be systematically investigated before they can be applied to the broad range fields where they have potential. Herein, the mechanical properties of GO papers with various thicknesses (0.5–100 μm) are investigated using bulge and tensile test methods; this includes the Young's modulus, fracture strength, fracture strain, and toughness. The Young's modulus, fracture strength, and toughness are found to decrease with increasing thickness, with the first two exhibiting differences by a factor of four. In contrast, the fracture strain slightly increases with thickness. Transmission electron, scanning electron, and atomic force microscopy indicate that the mechanical properties vary with thickness due to variations in the inner structure and surface morphology, such as crack formation and surface roughness. Thicker GO papers are weaker because they contain more voids that are produced during the fabrication process. Surface wrinkles and residual stress are found to result in increased fracture strain. Determination of this structure–property relationship provide improved guidelines for the use of GO‐based thin‐film materials in mechanical structures.  相似文献   

18.
19.
20.
Non‐aqueous sol‐gel routes involving the reaction of metal oxide precursors in organic solvents (e.g., benzyl alcohol) at moderate temperature and pressure, offer advantages such as high purity, high reproducibility and the ability to control the crystal growth without the need of using additional ligands. In this paper, a study carried out on a series of iron oxide/reduced graphene oxide composites is presented to elucidate a structure‐properties relationship leading to an improved electrochemical performance of such composites. Moreover, it is demonstrated that the easy production of the composites in a variety of temperature and composition ranges, allows a fine control over the final particles size, density and distribution. The materials obtained are remarkable in terms of the particle's size homogeneity and dispersion onto the reduced graphene oxide surface. Moreover, the synthesis method used to obtain the graphene oxide clearly affects the performances of the final composites through the control of the restacking of the reduced graphene oxide sheets. It is shown that a homogeneous and less defective reduced graphene oxide enables good electrochemical performances even at high current densities (over 500 mAh/g delivered at current densities as high as 1600 mA/g). The electrochemical properties of improved samples reach the best compromise between specific capacity, rate capability and cycle stability reported so far.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号