首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sodium ion batteries (SIBs) are a promising alternative to lithium ion batteries for a broader range of energy storage applications in the future. However, the development of high‐performance anode materials is a bottleneck of SIBs advancement. In this work, Sb2Se3 nanorods uniformly wrapped by reduced graphene oxide (rGO) as a promising anode material for SIBs are reported. The results show that such Sb2Se3/rGO hybrid anode yields a high reversible mass‐specific energy capacity of 682, 448, and 386 mAh g?1 at a rate of 0.1, 1.0, and 2.0 A g?1, respectively, and sustains at least 500 stable cycles at a rate of 1.0 A g?1 with an average mass‐specific energy capacity of 417 mAh g?1 and capacity retention of 90.2%. In situ X‐ray diffraction study on a live SIB cell reveals that the observed high performance is a result of the combined Na+ intercalation, conversion reaction between Na+ and Se, and alloying reaction between Na+ and Sb. The presence of rGO also plays a key role in achieving high rate capacity and cycle stability by providing good electrical conductivity, tolerant accommodation to volume change, and strong electron interactions to the base Sb2Se3 anode.  相似文献   

2.
3.
The development of new insertion electrodes in sodium‐ion batteries requires an in‐depth understanding of the relationship between electrochemical performance and the structural evolution during cycling. To date in situ synchrotron X‐ray and neutron diffraction methods appear to be the only probes of in situ electrode evolution at high rates, a critical condition for battery development. Here, the structural evolution of the recently synthesized O3‐phase of Na2/3Fe2/3Mn1/3O2 is reported under relatively high current rates. The evolution of the phases, their lattice parameters, and phase fractions, and the sodium content in the crystal structure as a function of the charge/discharge process are shown. It is found that the O3‐phase persists throughout the charge/discharge cycle but undergoes a series of two‐phase and solid‐solution transitions subtly modifying the sodium content and atomic positions but keeping the overall space‐group symmetry (structural motif). In addition, for the first time, evidence of a structurally characterized region is shown that undergoes two‐phase and solid‐solution phase transitions simultaneously. The Mn/Fe–O bond lengths, c lattice parameter evolution, and the distance between the Mn/FeO6 layers are shown to concertedly change in a favorable manner for Na+ insertion/extraction. The exceptional electrochemical performance of this electrode can be related in part to the electrode maintaining the O3‐phase throughout the charge/discharge process.  相似文献   

4.
For alkali metal ion batteries, probing the ion storage mechanism (intercalation‐ or conversion‐type) and concomitant phase evolution during sodiation–desodiation cycling is critical to gain insights into understanding how the electrode functions and thus how it can be improved. Here, by using in situ transmission electron microscopy, the whole sodiation–desodiation process of spinel NiCo2O4 nanorods is tracked in real time. Upon the first sodiation, a two‐step conversion reaction mechanism has been revealed: NiCo2O4 is first converted into intermediate phases of CoO and NiO that are then further reduced to Co and Ni phases. Upon the first desodiation, Co and Ni cannot be recovered to original NiCo2O4 phase, and divalent metal oxides of CoO and NiO are identified as desodiated products for the first time. Such asymmetric conversion reactions account for the huge capacity loss during the first charging–discharging cycle of NiCo2O4‐based sodium‐ion batteries (SIBs). Impressively, a reversible and symmetric phase transformation between CoO/Co and NiO/Ni phases is established during subsequent sodiation–desodiation cycles. This work provides valuable insights into mechanistic understanding of phase evolution during sodiation–desodiation of NiCo2O4, with the hope of assistance in designing SIBs with improved performance.  相似文献   

5.
Electrical vehicles (EVs) are an attractive option for moving towards a CO2 neutral transportation sector, but in order for widespread commercial use of EVs, the cost of electrical energy storage (i.e., batteries) must be reduced and the energy storage capacity must be increased. New, higher performing but Earth abundant electrodes are needed to accomplish this goal. To aid the development of these materials, in situ characterization to understand battery operation and failure is essential. Since electrodes are inherently heterogeneous, with a range of relevant length scales, imaging is a necessary component of the suite of characterization methods. In this Feature Article, the rapidly growing and developing field of X‐ray based microscopy (XM) techniques is described and reviewed focusing on in situ and operando adaptations. Further, in situ transmission electron microscopy (TEM) is briefly discussed in this context and its complement to XM is emphasized. Finally, a perspective is given on some emerging X‐ray based imaging approaches for energy storage materials.  相似文献   

6.
Na‐ion batteries have become promising candidates for large‐scale energy‐storage systems because of the abundant Na resources and they have attracted considerable academic interest because of their unique behavior, such as their electrochemical activity for the Fe3+/Fe4+ redox couple. The high‐rate performance derived from the low Lewis‐acidity of the Na+ ions is another advantage of Na‐ion batteries and has been demonstrated in NaFe1/2Co1/2O2 solutions. Here, a solid solution of NaFeO2‐NaCoO2 is synthesized and the mechanisms behind their excellent electrochemical performance are studied in comparison to those of their respective end‐members. The combined analysis of operando X‐ray diffraction, ex situ X‐ray absorption spectroscopy, and density functional theory (DFT) calculations for Na1– x Fe1/2Co1/2O2 reveals that the O3‐type phase transforms into a P3‐type phase coupled with Na+/vacancy ordering, which has not been observed in O3‐type NaFeO2. The substitution of Co for Fe stabilizes the P3‐type phase formed by sodium extraction and could suppress the irreversible structural change that is usually observed in O3‐type NaFeO2, resulting in a better cycle retention and higher rate performance. Although no ordering of the transition metal ions is seen in the neutron diffraction experiments, as supported by Monte‐Carlo simulations, the formation of a superlattice originating from the Na+/vacancy ordering is found by synchrotron X‐ray diffraction for Na0.5Fe1/2Co1/2O2, which may involve a potential step in the charge/discharge profiles.  相似文献   

7.
A one‐step synthesis of Li‐rich layered materials with layered/spinel heterostructure has been systematically investigated. The composites are synthesized by a polyol method followed with an annealing process at 500–900 °C for 12 h. A spinel to layer phase transition is considered to take place during the heat treatment, and the samples obtained at different temperatures show diverse phase compositions. An “Li‐rich spinel phase decomposition” phase transition mechanism is proposed to explain the formation of such a heterostructure. The electrochemical properties of the heterostructure are found to be associated with the ratio of spinel to layer phases, the leach out of rock salt phase, and the change of crystallinity and particle size. Product with improved cyclic and rate performance is achieved by annealing at 700 °C for 12 h, with a discharge capacity of 214 mA h g?1 remaining at 0.2 C after 60 cycles and discharge capacity of about 200 mA h g?1 at 1 C.  相似文献   

8.
Heterostructuring electrodes with multiple electroactive and inactive supporting components to simultaneously satisfy electrochemical and structural requirements has recently been identified as a viable pathway to achieve high‐capacity and durable sodium‐ion batteries (SIBs). Here, a new design of heterostructured SIB anode is reported consisting of double metal‐sulfide (SnCo)S2 nanocubes interlaced with 2D sulfur‐doped graphene (SG) nanosheets. The heterostructured (SnCo)S2/SG nanocubes exhibit an excellent rate capability (469 mAh g?1 at 10.0 A g?1) and durability (5000 cycles, 487 mAh g?1 at 5.0 A g?1, 92.6% capacity retention). In situ X‐ray diffraction reveals that the (SnCo)S2/SG anode undergoes a six‐stage Na+ storage mechanism of combined intercalation, conversion, and alloying reactions. The first‐principle density functional theory calculations suggest high concentration of p–n heterojunctions at SnS2/CoS2 interfaces responsible for the high rate performance, while in situ transmission electron microscopy unveils that the interlacing and elastic SG nanosheets play a key role in extending the cycle life.  相似文献   

9.
Iron carbodiimide (FeNCN) is a high‐reactivity anode material for sodium‐ion batteries. However, strict synthesis technology and poor electrochemical stability limit its application. FeNCN polyhedrons are prepared using a facile one‐step pyrolysis process. In these polyhedrons, many “anchor‐like” structures are in situ constructed with Fe? C bonds. These Fe? C bonds connect the FeNCN polyhedrons closely. The FeNCN polyhedrons with “anchor‐like” structures exhibit good electrochemical stability, that is, high capacity retention of 79.9% (408 mAh g?1) at 0.5 A g?1 after 300 cycles. Further analysis suggests that the Fe? C bond plays an important role to improve the structural stability of FeNCN polyhedrons. The “anchor‐like” structures with Fe? C bonds can hold FeNCN polyhedrons closely when Na+ intercalates, avoiding structural breakage with obvious capacity loss. This work provides a novel synthesis technology of FeNCN and helps related researcher to deepen the understanding of this material, as well as provide inspirations as to improving the electrochemical stability of related materials.  相似文献   

10.
Potassium‐ion batteries (KIBs) are emerging as one of the most promising candidates for large‐scale energy storage owing to the natural abundance of the materials required for their fabrication and the fact that their intercalation mechanism is identical to that of lithium‐ion batteries. However, the larger ionic radius of K+ is likely to induce larger volume expansion and sluggish kinetics, resulting in low specific capacity and unsatisfactory cycle stability. A new Ni/Mn‐based layered oxide, P2‐type K0.44Ni0.22Mn0.78O2, is designed and synthesized. A cathode designed using this material delivers a high specific capacity of 125.5 mAh g?1 at 10 mA g?1, good cycle stability with capacity retention of 67% over 500 cycles and fast kinetic properties. In situ X‐ray diffraction recorded for the initial two cycles reveals single solid‐solution processes under P2‐type framework with small volume change of 1.5%. Moreover, a cathode electrolyte interphase layer is observed on the surface of the electrode after cycling with possible components of K2CO3, RCO2K, KOR, KF, etc. A full cell using K0.44Ni0.22Mn0.78O2 as the cathode and soft carbon as the anode also exhibits exceptional performance, with capacity retention of 90% over 500 cycles as well as superior rate performance. These findings suggest P2‐K0.44Ni0.22Mn0.78O2 is a promising candidate as a high‐performance cathode for KIBs.  相似文献   

11.
Potassium‐ion batteries have been regarded as the potential alternatives to lithium‐ion batteries (LIBs) due to the low cost, earth abundance, and low potential of K (?2.936 vs standard hydrogen electrode (SHE)). However, the lack of low‐cost cathodes with high energy density and long cycle life always limits its application. In this work, high‐energy layered P2‐type hierarchical K0.65Fe0.5Mn0.5O2 (P2‐KFMO) microspheres, assembled by the primary nanoparticles, are fabricated via a modified solvent‐thermal method. Benefiting from the unique microspheres with primary nanoparticles, the K+ intercalation/deintercalation kinetics of P2‐KFMO is greatly enhanced with a stabilized cathodic electrolyte interphase on the cathode. The P2‐KFMO microsphere presents a highly reversible potassium storage capacity of 151 mAh g?1 at 20 mA g?1, fast rate capability of 103 mAh g?1 at 100 mA g?1, and long cycling stability with 78% capacity retention after 350 cycles. A full cell with P2‐KFMO microspheres as cathode and hard carbon as anode is constructed, which exhibits long‐term cycling stability (>80% of retention after 100 cycles). The present high‐performance P2‐KFMO microsphere cathode synthesized using earth‐abundant elements provides a new cost‐effective alternative to LIBs for large‐scale energy storage.  相似文献   

12.
Searching high capacity cathode materials is one of the most important fields of the research and development of sodium‐ion batteries (SIBs). Here, we report a FeO0.7F1.3/C nanocomposite synthesized via a solution process as a new cathode material for SIBs. This material exhibits a high initial discharge capacity of 496 mAh g?1 in a sodium cell at 50 °C. From the 3rd to 50th cycle, the capacity fading is only 0.14% per cycle (from 388 mAh g?1 at 3rd the cycle to 360 mAh g?1 at the 50th cycle), demonstrating superior cyclability. A high energy density of 650 Wh kg?1 is obtained at the material level. The reaction mechanism studies of FeO0.7F1.3/C with sodium show a hybridized mechanism of both intercalation and conversion reaction.  相似文献   

13.
Spin coating is one of the most versatile methods to generate nanostructured block copolymer (BCP) thin films which are highly desired for many applications such as nanolithography or organic electronics. The self‐assembly pathways through phase separation, both in solvent and in bulk, strongly influence the final BCP structure obtained after spin coating. As a demonstration, the formation of highly ordered in‐plane lamellae is elucidated herein by using in situ grazing incidence small‐angle X‐ray scattering. A key step in this complex fast organization process is the formation of intermediate micellar phases triggered by solvent affinity toward one of the block. Indeed, directional coalescence of a short‐lived intermediate hexagonal structure of cylindrical micelles enables the development of a final highly ordered lamellar structure, predominantly oriented parallel to the substrate surface. These results suggest that the existence of such transient micellar phases is a crucial process in order to produce highly ordered structures with a specific orientation directly after the BCP thin film deposition; and should be the focus of further optimization for the directed self‐assembly and, more generally, in the bottom‐up nanostructure fabrication.  相似文献   

14.
An evolutionary modification approach, boron doped carbon coating, is initially used to improve the electrochemical properties of electrode materials of lithium‐ion batteries, such as Li3V2(PO4)3, and demonstrates apparent and significant modification effects. Based on the precise analysis of X‐ray photoemission spectroscopy results, Raman spectra, and electrochemical impedance spectroscopy results for various B‐doped carbon coated Li3V2(PO4)3 samples, it is found that, among various B‐doping types (B4C, BC3, BC2O and BCO2), the graphite‐like BC3 dopant species plays a huge role on improving the electronic conductivity and electrochemical activity of the carbon coated layer on Li3V2(PO4)3 surface. As a result, when compared with the bare carbon coated Li3V2(PO4)3, the electrochemical performances of the B‐doped carbon coated Li3V2(PO4)3 electrode with a moderate doping amount are greatly improved. For example, when cycled under 1 C and 20 C in the potential range of 3.0–4.3 V, this sample shows an initial capacity of 122.5 and 118.4 mAh g?1, respectively; after 200 cycles, nearly 100% of the initial capacity is retained. Moreover, the modification effects of B‐doped carbon coating approach are further validated on Li4Ti5O12 anode material.  相似文献   

15.
Lithium‐rich layered oxides are considered as promising cathode materials for Li‐ion batteries with high energy density due to their higher capacity as compared with the conventional LiMO2 (e.g., LiCoO2, LiNiO2, and LiNi1/3Co1/3Mn1/3O2) layered oxides. However, why lithium‐rich layered oxides exhibit high capacities without undergoing a structural collapse for a certain number of cycles has attracted limited attention. Here, based on the model of Li2RuO3, it is uncovered that the mechanism responsible for the structural integrity shown by lithium‐rich layered oxides is realized by the flexible local structure due to the presence of lithium atoms in the transition metal layer, which favors the formation of O22?‐like species, with the aid of in situ extended X‐ray absorption fine structure (EXAFS), in situ energy loss spectroscopy (EELS), and density functional theory (DFT) calculation. This finding will open new scope for the development of high‐capacity layered electrodes.  相似文献   

16.
Nickel‐rich layered materials LiNi1‐x‐yMnxCoyO2 are promising candidates for high‐energy‐density lithium‐ion battery cathodes. Unfortunately, they suffer from capacity fading upon cycling, especially with high‐voltage charging. It is critical to have a mechanistic understanding of such fade. Herein, synchrotron‐based techniques (including scattering, spectroscopy, and microcopy) and finite element analysis are utilized to understand the LiNi0.6Mn0.2Co0.2O2 material from structural, chemical, morphological, and mechanical points of view. The lattice structural changes are shown to be relatively reversible during cycling, even when 4.9 V charging is applied. However, local disorder and strain are induced by high‐voltage charging. Nano‐resolution 3D transmission X‐ray microscopy data analyzed by machine learning methodology reveal that high‐voltage charging induced significant oxidation state inhomogeneities in the cycled particles. Regions at the surface have a rock salt–type structure with lower oxidation state and build up the impedance, while regions with higher oxidization state are scattered in the bulk and are likely deactivated during cycling. In addition, the development of micro‐cracks is highly dependent on the pristine state morphology and cycling conditions. Hollow particles seem to be more robust against stress‐induced cracks than the solid ones, suggesting that morphology engineering can be effective in mitigating the crack problem in these materials.  相似文献   

17.
Iron sulfides have been attracting great attention as anode materials for high‐performance rechargeable sodium‐ion batteries due to their high theoretical capacity and low cost. In practice, however, they deliver unsatisfactory performance because of their intrinsically low conductivity and volume expansion during charge–discharge processes. Here, a facile in situ synthesis of a 3D interconnected FeS@Fe3C@graphitic carbon (FeS@Fe3C@GC) composite via chemical vapor deposition (CVD) followed by a sulfuration strategy is developed. The construction of the double‐layered Fe3C/GC shell and the integral 3D GC network benefits from the catalytic effect of iron (or iron oxides) during the CVD process. The unique nanostructure offers fast electron/Na ion transport pathways and exhibits outstanding structural stability, ensuring fast kinetics and long cycle life of the FeS@Fe3C@GC electrodes for sodium storage. A similar process can be applied for the fabrication of various metal oxide/carbon and metal sulfide/carbon electrode materials for high‐performance lithium/sodium‐ion batteries.  相似文献   

18.
19.
20.
MoSe2 grown on N,P‐co‐doped carbon nanosheets is synthesized by a solvothermal reaction followed with a high‐temperature calcination. This composite has an interlayer spacing of MoSe2 expanded to facilitate sodium‐ion diffusion, MoSe2 immobilized on carbon nanosheets to improve charge‐transfer kinetics, and N and P incorporated into carbon to enhance its interaction with active species upon cycling. These features greatly improve the electrochemical performance of this composite, as compared to all the controls. It presents a specific capacity of 378 mAh g?1 after 1000 cycles at 0.5 A g?1, corresponding to 87% of the capacity at the second cycle. Ex situ Raman spectra and high‐resolution transmission electron microscopy images confirm that it is element Se, rather than MoSe2, formed after the charging process. The interaction of the active species with modified carbon is simulated using density functional theory to explain this excellent stability. The superior rate capability, where the capacity at 15 A g?1 equals ≈55% of that at 0.5 A g?1, could be associated with the significant contribution of pseudocapacitance. By pairing with homemade Na3V2(PO4)3/C, this composite also exhibits excellent performances in full cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号