首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 14 毫秒
1.
Jaros M  Soga T  van de Goor T  Gas B 《Electrophoresis》2005,26(10):1948-1953
A simple rule stating that the signal in conductivity detection in capillary zone electrophoresis is proportional to the difference between the analyte mobility and mobility of the background electrolyte (BGE) co-ion is valid only for systems with fully ionized electrolytes. In zone electrophoresis systems with weak electrolytes both conductivity signal and electromigration dispersion of analyte peaks depend on the conductivity and pH effects. This allows optimization of the composition of BGEs to give a good conductivity signal of analytes while still keeping electromigration dispersion near zero, regardless of the injected amount of sample. The demands to achieve minimum electromigration dispersion and high sensitivity in conductivity detection can be accomplished at the same time. PeakMaster software is used for inspection of BGEs commonly used for separation of sugars (carbohydrates, saccharides) at highly alkaline pH. It is shown that the terms direct and indirect conductivity detection are misleading and should not be used.  相似文献   

2.
3.
Hruska V  Jaros M  Gas B 《Electrophoresis》2006,27(5-6):984-991
We introduce the mathematical model of electromigration of electrolytes in free solution together with free software Simul, version 5, designed for simulation of electrophoresis. The mathematical model is based on principles of mass conservation, acid-base equilibria, and electroneutrality. It accounts for any number of multivalent electrolytes or ampholytes and yields a complete picture about dynamics of electromigration and diffusion in the separation channel. Additionally, the model accounts for the influence of ionic strength on ionic mobilities and electrolyte activities. The typical use of Simul is: inspection of system peaks (zones), stacking and preconcentrating analytes, resonance phenomena, and optimization of separation conditions, in either CZE, ITP, or IEF.  相似文献   

4.
This article describes for the first time the combination of electrophoretic focusing on inverse electromigration dispersion (EMD) gradient, a new separation principle described in 2010, with electrospray-ionization (ESI) mass spectrometric detection. The separation of analytes along the electromigrating EMD profile proceeds so that each analyte is focused and concentrated within the profile at a particular position given by its pKa and ionic mobility. The proposed methodology combines this principle with the transport of the focused zones to the capillary end by superimposed electromigration, electroosmotic flow and ESI suction, and their detection by the MS detector. The designed electrolyte system based on maleic acid and 2,6-lutidine is suitable to create an inverse EMD gradient of required properties and its components are volatile enough to be compatible with the ESI interface. The characteristic properties of the proposed electrolyte system and of the formed inverse gradient are discussed in detail using calculated diagrams and computer simulations. It is shown that the system is surprisingly robust and allows sensitive analyses of trace amounts of weak acids in the pKa range between approx. 6 and 9. As a first practical application of electrophoretic focusing on inverse EMD gradient, the analysis of several sulfonamides in waters is reported. It demonstrates the potential of the developed methodology for fast and high-sensitivity analyses of ionic trace analytes, with reached LODs around 3 × 10−9 M (0.8 ng mL−1) of sulfonamides in spiked drinking water without any sample pretreatment.  相似文献   

5.
The combination of capillary isotachophoresis (ITP) and capillary zone electrophoresis (CZE) in the column coupling configuration was optimized in a mode where the electrolyte for the CZE step is different from the leading and terminating ITP electrolytes. Two colored markers, picric acid and 1-nitroso-2-naphthol, were used for exact timing of the transfer of isotachophoretically stacked analyte zones into the CZE column and for the control of the residual amount of the leading and terminating ITP electrolytes entering the CZE capillary together with the analytes, thus controlling the duration of transient ITP migration in the CZE capillary and ensuring good separation of the analytes and reproducibility of the migration times (relative standard deviations 1%). ITP-CZE was applied to the simultaneous assay of several cinnamic acid derivatives and flavonoids in methanolic extracts of Sambucus flowers and Crataegus leaves and flowers. The preconcentrating and cleansing effect of the ITP step allowed injection of relatively large sample volumes (30 microL). The limits of detection were approximately 20-50 ng x mL(-1) and 100 ng x mL(-1) for the acids and flavonoids, respectively ( thick similar 200-times lower compared to conventional CE) with spectrophotometric detection at 254 nm. The ITP-CZE exhibited satisfactory linearity and precision when using CZE buffer of pseudo "pH" 9.0; 1-nitroso-2-naphthol was employed as the internal standard. The separation took approximately 35 min. The ITP-CZE results for rutin, hyperoside, and vitexin-2-O"-rhamnoside were in good accordance with those obtained previously by high-performance liquid chromatography.  相似文献   

6.
We analyze in detail a mathematical model of capillary zone electrophoresis (CZE) based on the conception of eigenmobilities, which are eigenvalues of the matrix tied to the linearized continuity equations. Our model considers CZE systems, where constituents are weak electrolytes and where pH of the background electrolyte may reach the full range from 0 to 14. Both hydrogen and hydroxide ions are taken into account in relations for conductivity and electroneutrality. An electrophoretic system with N constituents has N eigenmobilities. We reveal that two of the eigenmobilities have a special meaning as they exist due to the presence of hydrogen ions and hydroxide ions (in water solutions). These two eigenmobilities are responsible for the existence of two corresponding system zones (system peaks). We show that the stationary zone (injection zone, water zone, gap, peak, dip) is in many common background electrolytes composed of these two eigenzones which overlap, due to their very low electrophoretic mobility, into one zone. Other eigenmobilities give rise to system zones originating due to a possible existence of double (or multiple) coconstituents in the background electrolyte. The last group of eigenmobilities is connected with the movement of eigenzones accompanying analytes and enabling their indirect UV or conductivity detection. The model allows assessing experimentally available quantities such as effective mobility of the analyte, molar conductivity detection response, transfer ratio, and relative velocity slope and gives a picture about migration of analytes, their electromigration dispersion and signals obtained in detectors. It allows computer simulation of electropherograms and enables optimization of background electrolytes.  相似文献   

7.
Beckers JL 《Electrophoresis》2000,21(14):2788-2796
A sample stacking procedure to which a specific combination of electrolyte solutions is applied is isotachophoresis (ITP) superimposed on capillary zone electrophoresis (CZE), a so-called ITP/CZE system. In ITP/CZE some components migrate in an ITP fashion on top of a background electrolyte, and the other analytes migrate in a zone electrophoretic manner. For such a system, the leading electrolyte consists of a mixture of an ionic species, L1, of high mobility (the leading ion of the ITP system), an ionic species, L2, of low mobility (the coions of the CZE system), and a buffering counter-ionic species, whereas the terminating solution only contains the ionic species L2 and the buffering counterions. The zones of the components migrating in the ITP/CZE mode are sharp owing to the self-correcting properties of the zones and the concentrations of the L1 ions of the system. Mobility windows can be calculated, indicating which ions can migrate in the ITP/CZE mode. In this article mobility windows are calculated by applying both strong and weak acids as L1 and L2 ions and it appears that mobility windows can be optimized by chosing different ratios of L1 and L2 as well as different pH values. It is possible to construct very narrow mobility windows, and thereby choose which component of a sample solution can be concentrated, and to what concentration, in a very selective way. The big advantage of ITP/CZE compared with applications such as transient ITP and transient stacking is that the stacked sample ionic species migrate in the ITP mode during the whole experiment; furthermore, they do not destack. Experimentally obtained electropherograms validate the calculated mobility windows for the ITP/CZE mode.  相似文献   

8.
The present work illustrated possibilities of column-coupling electrophoresis combined with DAD for the direct quantitative determination of trace drug (celiprolol, CEL) in clinical human urine samples. ITP, on-line coupled with CZE, served as an ideal injection technique (high sample load capacity, narrow and sharp drug zone). Moreover, the ITP provided an effective on-line sample pretreatment (preseparation, purification and preconcentration of the drug) producing analyte zone suitable for its direct detection and quantitation in CZE stage. Spectral DAD in comparison with single wavelength ultraviolet detection enhanced value of analytical information (i) verifying purity (i.e., spectral homogeneity) of drug zone (according to differences in spectrum profiles when compared tested and reference drug spectra) and (ii) indicating zones/peaks with spectra similar to the drug spectrum (potential structurally related metabolites). The characterization of trace analyte signals superposed on the baseline noise was more definite thanks to the application of background correction and smoothing procedure to the raw DAD spectra (producing relevant spectral response). The proposed ITP-CZE-DAD method was characterized by favorable performance parameters for CEL in urine matrices {e.g., the lower limit of quantification was 9.7 ng/mL, RSD and relative error of the determinations were lower than 3% (precision) and 1% (accuracy), respectively, analyte peak exhibited spectral homogeneity (reflecting separation selectivity), separation efficiency was 84,500 theoretical plates} and successfully applied in a trial pharmacokinetic study of CEL.  相似文献   

9.
Gas B  Kenndler E 《Electrophoresis》2004,25(23-24):3901-3912
When working with capillary zone electrophoresis (CZE), the analyst has to be aware that the separation system is not homogeneous anymore as soon as a sample is brought into the background electrolyte (BGE). Upon injection, the analyte creates a disturbance in the concentration of the BGE, and the system retains a kind of memory for this inhomogeneity, which is propagated with time and leads to so-called system zones (or system eigenzones) migrating in an electric field with a certain eigenmobility. If recordable by the detector, they appear in the electropherogram as system peaks (or system eigenpeaks). However, although their appearance can not be forecasted and explained easily, they are inherent for the separation system. The progress in the theory of electromigration (accompanied by development of computer software) allows to treat the phenomenon of system zones and system peaks now also in very complex BGE systems, consisting of several multivalent weak electrolytes, and at all pH ranges. It also allows to predict the existence of BGEs having no stationary injection zone (or water zone, EO zone, gap, dip). Our paper reviews the theoretical background of the origin of the system zones (system peaks, system eigenpeaks), discusses the validity of the Kohlrausch regulating function, and gives practical hints for preparing BGEs with good separation ability not deteriorated by the occurrence of system peaks and by excessive peak-broadening.  相似文献   

10.
The combination of capillary isotachophoresis (ITP) and capillary zone electrophoresis (CZE) in the column-coupling configuration has been optimized in a mode in which the background electrolyte employed in the CZE step was different from the leading and terminating electrolytes of the ITP step. The optimum composition of the electrolyte system was 0.01 M HCl, 0.02 M IMI, 0.2% HEC, pH 7.2 (leading electrolyte), 0.01 M HEPES, pH 8.2 (terminating electrolyte), and 25 mM MES, 50 mM TRIS, 30 mM boric acid, 0.2% HEC, pH 8.3 (background electrolyte). All solutions contained 20% methanol. The timing of the transfer of isotachophoretically stacked analyte zones into the CZE column was also optimized. An ITP–CZE method with UV detection at 270 nm was developed for separation of nine phenolic acids (protocatechuic, syringic, vanillic, cinnamic, ferulic, caffeic, ρ-coumaric, chlorogenic, and gentisic acids) in a model mixture and used for assay of some of these acids in a methanolic extract of herba epilobi. Application of ITP–CZE resulted in 100-fold better sensitivity than conventional CZE; limits of detection ranged between 10 and 60 ng mL−1. When MES–TRIS–borate-based buffer, pH 8.3, was used in the CZE separation step the linearity of the ITP–CZE response was satisfactory (correlation coefficients were from 0.9937 to 0.9777). Repeatability was also satisfactory (RSD values ranged between 0.77% and 1.28% for migration times and between 1.65% and 13.69% for peak area). Revised: 23 March and 27 April 2006  相似文献   

11.
Beckers JL  Urbánek M  Bocek P 《Electrophoresis》2005,26(10):1869-1873
We present theoretical and experimental data indicating that anionic system zones (SZs), due to free migrating hydroxide anions, can be expected in background electrolytes (BGEs) with a low buffer capacity. In the system containing completely unbuffered BGEs the hydroxide ions derived from the sample start to migrate freely through the capillary tube with the mobility of single hydroxide ions and cause stepwise disturbances in the baseline of the detector trace. Remarkably, this type of SZs do not appear to contribute significantly to the electromigration dispersion (EMD) of the zones of the analytes.  相似文献   

12.
The complete mathematical model of electromigration in systems with complexation agents introduced in the Part I of this article (V. Hru?ka et al., Eletrophoresis, 2012, 33, this issue), which was implemented into our simulation program Simul 5, was verified experimentally. Three different chiral selector (CS) systems differing in the type of the CS, the magnitude of the complexation constants as well as in the experimental conditions were selected for verification. The experiments and simulations were performed at various concentrations of the CSs in order to discuss the influence of the concentration of the CS on the separation. The simulated and experimental electropherograms show very good agreement in the position, shape and amplitude of the analyte peaks. The new Simul 5 Complex offers a deep insight into electrophoretical separations that take place in systems containing complexing agents, for example into enantiomer separations. Using Simul 5 Complex we were able to predict and explain the significant electromigration dispersion of analyte peaks. It was clarified that the electromigration dispersion in these systems results directly from complexation. The new Simul 5 Complex was also shown to be a useful and powerful tool for the prediction of the results of enantioseparations.  相似文献   

13.
The use of capillary isotachophoresis (ITP), operating in a discontinuous fractionation mode, for preparative separations of enantiomers of chiral compounds was studied. The ITP separations were carried out in the column-coupling configuration of the separation unit provided with the preseparation column of a 1.0 mm ID and the trapping column of a 0.8 mm ID. Such a configuration of the CE separation unit offers several working regimes suitable to preparative separations of enantiomers. 2,4-Dinitrophenyl-DL-norleucine (DNP-Norleu) was employed as a model analyte in our experiments with beta-cyclodextrin serving in the electrolyte solutions as a chiral selector. The preparative separations lasting about 20 min were evaluated by ITP and (more often) by capillary zone electrophoresis (CZE). It was found that one preparative run provided up to 14 microg of pure DNP-Norleu enantiomers. This corresponded to a 75 times higher production rate of ITP relative to a maximum value of this parameter as estimated for preparative CZE runs in cylindrical capillaries (0.5 pmol/s). About 75% of the DNP-Norleu enantiomers loaded into the preparative equipment could be recovered in pure enantiomer fractions. Contiguous natures of the zones in the ITP stack and adsorption losses of the enantiomers in the isolation step were found to set practical limits for a further enhancement of the recovery rates in the isolation of pure enantiomers.  相似文献   

14.
An experimental study of parameters influencing peak shapes in ion-exchange open tubular (OT) capillary electrochromatography (CEC) was conducted using adsorbed quaternary aminated latex particles as the stationary phase. The combination of separation mechanisms from both capillary electrophoresis and ion-exchange chromatography results in peak broadening in OT-CEC arising from both these techniques. The sources of peak broadening that were considered included the relative electrophoretic mobilities of the eluent co-ion and analyte, and resistance to mass transfer in both the mobile and stationary phases. The parameters investigated were the mobility of the eluent co-ion, column diameter, separation temperature and secondary interactions between the analyte and the stationary phase. The electromigration dispersion was found to influence peak shapes to a minor extent, indicating that chromatographic retention was the dominant source of dispersion. Improving the resistance to mass transfer in the mobile phase by decreasing the capillary diameter improved peak shapes, with symmetrical peaks being obtained in a 25 microm I.D. column. However, an increase in temperature from 25 degrees C to 55 degrees C failed to show any significant improvement. The addition of p-cyanophenol to the mobile phase to suppress secondary interactions with the stationary phase did not result in the expected improvement in efficiency.  相似文献   

15.
The influence of the microstructure and the stable crystal structure on the electrochemical properties of the electrolytic manganese dioxide (EMD) produced from manganese cake (EMDMC), low-grade manganese ore (EMDLMO), and synthetic manganese sulfate solutions (EMDSMS) is reported. X-ray diffraction, Fourier transform infrared spectroscopy, thermogravimetry/differential thermal analysis, field emission scanning electron microscopy (FESEM), and chemical analyses were used to determine the structural and chemical characteristics of the EMD samples. The charge–discharge profile was studied in 9 M KOH using a galvanostatic charge–discharge unit. All the samples were found to contain predominantly γ-phase MnO2, which is electrochemically active for energy storage applications. FESEM images show that preparation method significantly influences surface morphology, shape, and size of the EMD particles. In almost all cases, nanoparticles were obtained, with spindle-shaped nanoparticles for EMDMC, platy nanoparticles in the case of EMDLMO, and anisotropic growth of tetra-branched star-like nanoparticles of EMDSMS. These nanoparticles arrange themselves in a near net-like fashion, resulting in porosity of the flakes of EMD during electrochemical deposition. Thermal studies showed loss of structural water and formation of lower manganese oxides. The EMDMC showed superior discharge capacity of ~280 mAh g?1 as compared to EMDLMO (275 mAh g?1) and EMDSMS (245 mAh g?1).  相似文献   

16.
The purpose of applying a countercurrent flow to isotachophoretic migration is to increase the effective separation channel length during ITP. However, severe dispersion induced by applying a counterflow can be detrimental to ITP. This paper uses numerical simulations in a 2D axisymmetric domain to investigate the dispersion caused by a parabolic counterflow in open‐capillary ITP. Counterflow in these simulations was generated by applying a back pressure to stop the isotachophoretic stack, i.e., forming stationary ITP zones. It is found that dispersion is strongly related to analyte molecular diffusivity: R‐phycoerythrin, due to its small diffusivity, showed ~20‐fold increase in zone width in stationary counterflow ITP, compared to ITP in the absence of counterflow, while fluorescein only had ~10% increase in zone width under similar operating conditions. Applying the Taylor–Aris dispersion formula in counterflow ITP simulations provided only a rough estimate of the dispersion, e.g., overestimation of analyte zone widths. Experiments on counterflow ITP were conducted in a silica capillary that was covalently and dynamically coated to exclude electroosmosis effect. The counterflow was generated by adjusting the relative height of the fluids in the two reservoirs at the capillary ends. Good qualitative agreement between simulations and experiments was found.  相似文献   

17.
18.
Capillary isotachophoresis (ITP) and comprehensive isotachophoresis-capillary electrophoresis (ITP-CE) were successfully coupled to electrospray ionization (ESI) orthogonal acceleration time-of-flight mass spectrometry (TOF-MS) using angiotensin peptides as model analytes. The utility of ITP-TOF-MS and ITP-CE-TOF-MS for the analysis of samples containing analyte amounts sufficient to form flat-top ITP zones (30 microM) as well as for samples with trace analyte amounts (0.3 microM) was studied. Separations were performed in 150 microm internal diameter (I.D.) capillaries for the ITP experiments, and in 200 microm I.D. (ITP) and 50 microm I.D. (CE) capillaries for ITP-CE experiments. The fused-silica columns were coated with poly(vinyl alcohol) to suppress electroosmotic flow that can disrupt ITP zone profiles. The sample loading capacity in both ITP and comprehensive ITP-CE was greatly enhanced (up to 10 microl) compared with typical nanoliter-sized injection volumes in CE. It was concluded that ITP-TOF-MS alone was adequate for the separation and detection of high concentration samples. The outcome was different at lower analyte concentrations where mixed zones or very sharp peaks formed. With formation of mixed zones, ion suppression and discrimination could occur, complicating quantitative determination of the analytes. This problem was effectively overcome by inserting a CE capillary between the ITP and TOF-MS. In such an arrangement, samples were preconcentrated in the high load WTP capillary and then injected into a CE capillary where they were separated into non-overlapping peaks prior to their detection by TOF-MS. The advantage of this comprehensive arrangement, which we have described previously, is that there is no need to discard portions of the sample in order to avoid overloading of the CE capillary. The whole sample is analyzed by multiple injections from ITP to CE. Thus, this method can be used for the analysis of complex samples with wide ranges of component concentrations.  相似文献   

19.
We present a model and an associated numerical scheme to simulate complex electrokinetic processes in channels with nonuniform cross‐sectional area. We develop a quasi‐1D model based on local cross‐sectional area averaging of the equations describing unsteady, multispecies, electromigration‐diffusion transport. Our approach uses techniques of lubrication theory to approximate electrokinetic flows in channels with arbitrary variations in cross‐section; and we include chemical equilibrium calculations for weak electrolytes, Taylor–Aris type dispersion due of nonuniform bulk flow, and the effects of ionic strength on species mobility and on acid–base equilibrium constants. To solve the quasi‐1D governing equations, we provide a dissipative finite volume scheme that adds numerical dissipation at selective locations to ensure both unconditional stability and high accuracy. We couple the numerical scheme with a novel adaptive grid refinement algorithm that further improves the accuracy of simulations by minimizing numerical dissipation. We benchmark our numerical scheme with existing numerical schemes by simulating nonlinear electrokinetic problems, including ITP and electromigration dispersion in CZE. Simulation results show that our approach yields fast, stable, and high‐resolution solutions using an order of magnitude less grid points compared to the existing dissipative schemes. To highlight our model's capabilities, we demonstrate simulations that predict increase in detection sensitivity of ITP in converging cross‐sectional area channels. We also show that our simulations of ITP in variable cross‐sectional area channels have very good quantitative agreement with published experimental data.  相似文献   

20.
Dynamic computer simulation data are compared for the first time with CE data obtained with a laboratory made system comprising an array of 8 contactless conductivity detectors (C4Ds). The experimental setup featured a 50 μm id linear polyacrylamide (LPA) coated fused‐silica capillary of 70 cm length and a purpose built sequential injection analysis manifold for fluid handling of continuous or discontinuous buffer configurations and sample injection. The LPA coated capillary exhibits a low EOF and the manifold allows the placement of the first detector at about 2.7 cm from the sample inlet. Agreement of simulated electropherograms with experimental data was obtained for the migration and separation of cationic and anionic analyte and system zones in CZE configurations in which EOF and other column properties are constant. For configurations with discontinuous buffer systems, including ITP, experimental data obtained with the array detector revealed that the EOF is not constant. Comparison of simulation and experimental data of ITP systems provided the insight that the EOF can be estimated with an ionic strength dependent model similar to that previously used to describe EOF in fused‐silica capillaries dynamically double coated with Polybrene and poly(vinylsulfonate). For the LPA coated capillaries, the electroosmotic mobility was determined to be 17‐fold smaller compared to the case with the charged double coating. Simulation and array detection provide means for quickly investigating electrophoretic transport and separation properties. Without realistic input parameters, modeling alone is not providing data that match CE results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号