首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Osmotic coefficients of binary mixtures containing several primary and secondary alcohols (1-propanol, 2-propanol, 1-butanol, 2-butanol, and 1-pentanol) and the pyridinium-based ionic liquid 1-ethylpyridinium ethylsulfate were determined at T = 323.15 K using the vapour pressure osmometry technique. From the experimental results, vapour pressure and activity coefficients can be determined. For the correlation of osmotic coefficients, the extended Pitzer model modified by Archer, and the modified NRTL (MNRTL) model were used, obtaining deviations lower than 0.017 and 0.047, respectively. The mean molal activity coefficients and the excess Gibbs free energy for the binary mixtures studied were determined from the parameters obtained with the extended Pitzer model modified by Archer.  相似文献   

2.
Measurements of osmotic coefficients of BmimCl (1-butyl-3-methylimidazolium chloride) and HmimCl (1-hexyl-3-methylimidazolium chloride) with ethanol and EmimEtSO4 (1-ethyl-3-methylimidazolium ethylsulfate) and EmpyEtSO4 (1-ethyl-3-methylpyridinium ethylsulfate) with water at T = (313.15 and 333.15) K are reported in this work. Vapour pressure and activity results of the studied binary systems are obtained from experimental measurements. The results for the osmotic coefficients are correlated using the extended Pitzer model modified by Archer and the modified NRTL (MNRTL) model. The standard deviations obtained with both models are also given. The parameters obtained with the extended Pitzer model of Archer are used to calculate the mean molal activity coefficients.  相似文献   

3.
Measurement of osmotic coefficients of binary mixtures containing several primary and secondary alcohols (1-propanol, 2-propanol, 1-butanol, 2-butanol, and 1-pentanol) and the pyridinium-based ionic liquid 1,3-dimethylpyridinium methylsulfate were performed at T = 323.15 K using the vapor pressure osmometry technique, and from experimental data, vapor pressure, and activity coefficients were determined. The extended Pitzer model modified by Archer, and the NRTL model modified by Jaretun and Aly (MNRTL) were used to correlate the experimental osmotic coefficients, obtaining standard deviations lower than 0.017 and 0.054, respectively. From the parameters obtained with the extended Pitzer model modified by Archer, the mean molal activity coefficients and the excess Gibbs free energy for the studied binary mixtures were calculated. The effect of the cation is studied comparing the experimental results with those obtained for the ionic liquid 1,3-dimethylimidazolium methylsulfate.  相似文献   

4.
The osmotic and activity coefficients and vapour pressures of binary mixtures containing 1-propanol, or 2-propanol and imidazolium-based ionic liquids with bis(trifluoromethylsulfonyl)imide as anion (1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide, C2MimNTf2, 1-methyl-3-propylimidazolium bis(trifluoromethylsulfonyl)imide, C3MimNTf2, and 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide, C4MimNTf2) were determined at T = 323.15 K using the vapour pressure osmometry technique. The experimental osmotic coefficients were correlated using the extended Pitzer model modified by Archer and the MNRTL model, obtaining standard deviations lower than 0.033 and 0.064, respectively. The mean molal activity coefficients and the excess Gibbs free energy for the mixtures studied were calculated from the parameters of the extended Pitzer model modified by Archer. Besides the effect of the alkyl-chain of the cation, the effect of the anion can be assessed comparing the experimental results with those previously obtained for imidazolium ionic liquids with sulphate anions.  相似文献   

5.
Measurements of osmotic coefficients of BMimMSO4 (1-butyl-3-methylimidazolium methylsulfate) and MMimMSO4 (1,3-dimethylimidazolium methylsulfate) with ethanol, 1-propanol, and 2-propanol at T = 323.15 K are reported in this work. Vapour pressure and activity values for the binary systems studied are obtained from experimental results. The osmotic coefficients are correlated using the extended Pitzer model modified by Archer and the modified NRTL (MNRTL) model. The standard deviations obtained with both models are lower than 0.013 and 0.060, respectively. The parameters obtained with the extended Pitzer model of Archer are used to calculate the mean molal activity coefficients and the excess Gibbs free energy of the binary mixtures.  相似文献   

6.
Measurements of osmotic coefficients of BmimCl (1-butyl-3-methylimidazolium chloride), HmimCl (1-hexyl-3-methylimidazolium chloride), MmimMeSO4 (1,3-dimethylimidazolium methylsulfate), and BmimMeSO4 (1-butyl-3-methylimidazolium methylsulfate) with water at T = (313.15 and 333.15) K are reported in this work. Vapour pressure and activity data of all the studied binary systems are obtained from experimental data. The osmotic coefficients data are correlated using the extended Pitzer model of Archer and the modified NRTL (MNRTL) model and standard deviations obtained with both models are given too. The parameters obtained with the extended Pitzer model of Archer are used to calculate the mean molal activity coefficients.  相似文献   

7.
The ionic liquid 1-ethyl-3-methylimidazolium ethylsulfate has been tested as solvent for the separation of thiophene from aliphatic hydrocarbons. Liquid–liquid equilibrium data have been determined for ternary systems containing the ionic liquid, thiophene and C6, C7, C12 or C16 alkanes at T = 298.15 K. The performance of the ionic liquid as solvent in such systems has been evaluated. The experimental data were correlated using the NRTL and UNIQUAC equations, and the binary interaction parameters have been reported. The phase diagrams for the ternary mixtures including both the experimental and calculated tie-lines have been presented.  相似文献   

8.
In this work, physical properties (densities and speeds of sound) for the binary systems {1-propanol, or 2-propanol, or 1-butanol, or 2-butanol, or 1-pentanol + 1-butyl-3-methylimidazolium trifluoromethanesulfonate} were experimentally measured from T = (293.15 to 323.15) K and at atmospheric pressure. These data were used to calculate the apparent molar volume and apparent molar isentropic compression which were fitted to a Redlich–Meyer type equation. This fit was used to obtain the corresponding apparent molar properties at infinite dilution. On the other hand, the osmotic and activity coefficients and vapor pressures of these binary mixtures were also determined at T = 323.15 K using the vapor pressure osmometry technique. The Extended Pitzer model of Archer was employed to correlate the experimental osmotic coefficients. From the parameters obtained in the correlation, the mean molal activity coefficients and the excess Gibbs free energy for the studied mixtures were calculated.  相似文献   

9.
In the present paper, liquid–liquid equilibrium in binary systems containing the ionic liquid 1-ethyl-3-methylimidazolium ethylsulfate is studied. It was suggested in papers published by other authors that 1-ethyl-3-methylimidazolium ethylsulfate could potentially be a suitable solvent for extracting aromatic compounds from mixtures containing aliphatic hydrocarbons, such as naphtha cracker feeds. To be able to assess the selectivity of 1-ethyl-3-methylimidazolium ethylsulfate towards aliphatic, cyclic, and aromatic hydrocarbons, mutual solubilities of the ionic liquid and n-heptane, methylcyclohexane, and toluene were measured by the volumetric method. To evaluate quantitatively the quality of the experimental data and their agreement with available literature values, a correlation by two polymer-solution models, the modified Flory–Huggins equation proposed by De Sousa and Rebelo and the thermodynamic lattice model proposed by Qin and Prausnitz was carried out, the model parameters being optimized by a gnostic regression method.  相似文献   

10.
Precise vapor pressure data for LiBr solutions in 2-propanol are given for temperatures ranging from (298.15 to 348.15) K. The molality range was from (0.0743 to 1.4825) mol-kg–1. Osmotic coefficients were calculated by taking into account the second virial coefficient of 2-propanol. The parameters of the Archer extension of the Pitzer model, MSA-NRTL model, and chemical model of Barthel are evaluated. The parameters of the Archer extension of the Pitzer model were used to calculate the activity coefficients of LiBr in 2-propanol solutions.  相似文献   

11.
The experimental densities for the binary systems of an ionic liquid and an alkanol {1-ethyl-3-methylimidazolium ethylsulfate [EMIM]+ [EtSO4]? + methanol or 1-propanol or 2-propanol} were determined at T = (298.15, 303.15, and 313.15) K. The excess molar volumes for the above systems were then calculated from the experimental density values for each temperature. The Redlich–Kister smoothing polynomial was used to fit the experimental results and the partial molar volumes were determined from the Redlich–Kister coefficients. For all the systems studied, the excess molar volume results were negative over the entire composition range for all the temperatures. The excess molar volumes were correlated with the pentic four parameter virial (PFV) equation of state (EoS) model.  相似文献   

12.
In this paper, densities and speeds of sound for five binary systems {alcohol + 1-butyl-3-methylimidazolium dicyanamide} were measured from T = (293.15 to 323.15) K and atmospheric pressure. From these experimental data, apparent molar volume and apparent molar isentropic compression have been calculated and fitted to a Redlich–Meyer type equation. This fit was also used to calculate the apparent molar volume and apparent molar isentropic compression at infinite dilution for the studied binary mixtures. Moreover, the osmotic and activity coefficients and vapor pressures of these binary mixtures were also determined at T = 323.15 K using the vapor pressure osmometry technique. The experimental osmotic coefficients were correlated using the Extended Pitzer model of Archer. The mean molal activity coefficients and the excess Gibbs free energy for the studied mixtures were calculated from the parameters obtained in the correlation.  相似文献   

13.
Experimental results for the solubility of carbon dioxide in the ionic liquid 1-ethyl-3-methylimidazolium 2-(2-methoxyethoxy) ethylsulfate are not reported in the literature. To this end, we present in this work new solubility data for carbon dioxide in 1-ethyl-3-methylimidazolium 2-(2-methoxyethoxy) ethylsulfate for temperatures ranging from (303.2 to 343.2) K and pressures up to 6.7 MPa using a thermogravimetric microbalance. The carbon dioxide solubility was determined from absorption saturation (equilibrium) data at each fixed temperature and pressure. The buoyancy effect was accounted in the evaluation of the carbon dioxide solubility. Highly accurate equations of states for carbon dioxide and for ionic liquids were employed to determine the effect of buoyancy on carbon dioxide solubility. The solubility measurements are presented as a function of temperature and pressure. The present experimental solubility results have been successfully correlated using an extended Henry’s law equation.  相似文献   

14.
《Fluid Phase Equilibria》2005,233(2):123-128
Isobaric vapor–liquid equilibria for the binary mixtures of tert-butanol (TBA) + 2-ethyl-1-hexanol and n-butanol (NBA) + 2-ethyl-1-hexanol were experimentally investigated at atmospheric pressure in the temperature range of 353.2–458.2 K. The raw experimental data were correlated using the UNIQUAC and NRTL models and used to estimate the interaction parameters between each pair of components in the systems. The experimental activity coefficients were obtained using the gas chromatographic method and compared with the calculated data obtained from these equilibrium models. The results show that UNIQUAC model gives better correlation than NRTL for these binary systems. The liquid–liquid extraction of TBA from aqueous solution using 2-ethyl-1-hexanol was demonstrated by simulation and the variation of separation factor of TBA at several temperatures was reported.  相似文献   

15.
Precise vapor pressure data for LiBr solutions in ethanol are given for temperatures ranging from 298.15 to 348.15 K. The molality range investigated is from 0.0705 to 3.4451 mol-kg–1. Osmotic coefficients are calculated by taking into account the second virial coefficient of ethanol. The parameters of the extended Pitzer ion-interaction model of Archer, the MSA-NRTL model, and the chemical model of Barthel are evaluated and discussed. The parameters of the extended Pitzer ion-interaction model of Archer are used to calculate the mean molal activity coefficients. Osmotic and activity coefficients both decrease with increasing temperature in this temperature range.  相似文献   

16.
Precise vapor pressure data for pure acetonitrile and (LiBr + acetonitrile) are given for temperatures ranging from T=(298.15 to 343.15) K. The molality range is from m=(0.0579 to 0.8298) mol · kg−1. The osmotic coefficients are calculated by taking into account the second virial coefficient of acetonitrile. The parameters of the extended Pitzer ion interaction model of Archer and the mole fraction-based thermodynamic model of Clegg–Pitzer are evaluated. These models accurately reproduce the available osmotic coefficients. The parameters of the extended Pitzer ion interaction model of Archer are used to calculate the mean molal activity coefficients.  相似文献   

17.
The solubility and diffusion coefficient were determined for carbon dioxide and hydrogen sulfide gases in the ionic liquid 1-ethyl-3-methylimidazolium ethylsulfate ([emim][EtSO4]) at temperatures ranging from (303.15 to 353.15) K and pressures up to 1.6 MPa. The Krichevsky–Kasarnovsky equation was used to correlate solubility data and Henry’s law constants at different temperatures were obtained. The partial molar thermodynamic functions of solution such as Gibbs free energy, enthalpy, and entropy were calculated using the solubility data. A semi-infinite volume approach is used to obtain the diffusion coefficients for CO2 and H2S and a correlation equation with temperature is presented for each gas. Comparison showed that H2S is more soluble than CO2 and its diffusion coefficient is about two orders of magnitude as that of CO2 in the ionic liquid studied in this work.  相似文献   

18.
Osmotic coefficients of the binary solutions of two room-temperature ionic liquids (1-butyl-3-methylimidazolium chloride and bromide) in methanol and ethanol have been measured at T = 298.15 K by the isopiestic method. The experimental osmotic coefficient data have been correlated using a forth-order polynomial in terms of (molality)0.5, with both, ion interaction model of Pitzer and electrolyte non-random two liquid (e-NRTL) model of Chen. The values of vapor pressures of above-mentioned solutions have been calculated from the osmotic coefficients. The model parameters fitted to the experimental osmotic coefficients have been used for prediction of the mean ionic activity coefficients of those ionic liquids in methanol and ethanol.  相似文献   

19.
The solubility of lithium bromide and lithium nitrate in solvents methanol, ethanol, 1-propanol, 2-propanol and 1-butanol were measured in the range between 298.15 and 338.15 K using an analytical gravimetric method. An empirical equation was used to fit the experimental solubilities and the Pitzer model with inclusion of Archer's ionic strength was used for the calculation of osmotic coefficients. The experimental data of system pressures (p) for the correlation of LiBr + ethanol, LiBr + 2-propanol at T (298.15-333.15 K) and LiNO3 + ethanol at T (298.15-323.15 K) were obtained from published literatures. Moreover, the parameters of the Pitzer model were re-correlated and were used to predict mean ion activity coefficients. A procedure was also presented to predict the solubility products of salts in pure organic solvent.  相似文献   

20.
In order to select the most suitable ionic liquids (ILs) for certain applications it is necessary to know some of their thermophysical properties, such as density or viscosity. In this work we have performed density measurements of two ILs 1-ethyl-3-methylimidazolium ethylsulfate and 1-(2-methoxyethyl)-1-methyl-pyrrolidinium bis(trifluoromethylsulfonyl)imide in a broad range of temperature and pressure ((278.15 to 398.15) K and up to 120 MPa). From these measurements we have obtained other volumetric properties such as isothermal compressibility and isobaric thermal expansivity. In addition, density values were predicted using the method proposed by Gardas and Coutinho and also that proposed by Jacquemin et al., obtaining a good agreement with experimental values.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号