首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
铌和锆对(Nd,Pr)2Fe14B/α-Fe快淬合金晶化和磁性能的影响   总被引:1,自引:0,他引:1  
研究了Nb和Zr添加对快淬纳米双相(Nd,Pr)2Fe14B/α-Fe合金晶化行为和磁性能的影响. 结果表明 (Nd0.4Pr0.6)8.5Fe85.5B6合金非晶晶化时, 在α-Fe相初始晶化后, 出现了(Nd,Pr)3Fe62B14亚稳相, 最终亚稳相分解形成(Nd,Pr)2Fe14B和α-Fe两相组织; (Nd0.4Pr0.6)8.5Fe84.5Nb0.5Zr0.5B6非晶晶化时, 同时析出α-Fe相和(Nd,Pr)2Fe14B相. 这说明添加Nb和Zr可避免亚稳相的形成并细化晶粒, 最大磁能积(BH)max从复合添加前的107.5上升到143.6 kJ·m-3. 而且, Nb和Zr原子在非晶晶化过程中可以部分取代Nd和Pr的晶位, 使稀土原子可以参与形成更多的硬磁相, 进一步提高了内禀矫顽力iHc. 合金(Nd0.4Pr0.6)8.5Fe84.5Zr0.5Nb0.5 B6经690 ℃退火10 min后磁性能最优, Br=1.10 T, iHc=534.2 kA·m-1, (BH)max=143.6 kJ·m-3.  相似文献   

2.
采用单辊快淬法制备了Nd12.3-xDyxFe79.7Zr0.8Nb0.8Cu0.4B6.0(x=0,0.5,1.5,2.5)合金纳米晶单相永磁薄带,研究了合金薄带晶化处理后,成分、组织结构与磁性能之间的关系.X射线衍射分析(XRD)表明,淬态合金主要由非晶相和Nd2Fe14B相组成,完全晶化后由Nd2Fe14B相和少量α-Fe组成.高分辨透射电镜(HRTEM)分析表明,经充分退火后,Nd2Fe14B晶体完整,晶粒间几乎没有边界相.随着Dy含量增加,晶粒尺寸细化,矫顽力大幅提高.x=0.5合金综合磁性能最佳,经过700℃晶化处理10min后,其磁性能为Jr=1.09 T,Hci=1048kA·m-1,(BH)max=169.5 kJ·m-3.  相似文献   

3.
利用XRD,TEM和DTA研究了不同淬火辊速度、晶化处理温度与时间对α-Fe/Nd2Fe14B型Nd10.5Fe78.8-xCo5.0ZrxB5.7纳米晶复合磁体结构和磁性能的影响规律。冷却辊速为25m·s^-1的Nd10.5Fe78.8-xCo5.0ZrxB5.7快淬态条屑具有纳米晶复合磁体结构,不经晶化处理就可获得较好的永磁性能。研究了Zr的添加和晶粒尺寸对性能的影响规律。添加0.5%(原子分数)Zr的合金进行700℃×10min的晶化处理后可获得较好的永磁性能。分析了微观结构和性能变化的机制。  相似文献   

4.
Nd10.1Fe(83.7-x-y)CoxZryB6.2永磁材料结构和磁性能的研究   总被引:7,自引:0,他引:7  
采用熔体快淬及晶化热处理工艺制备Nd10.1Fe(83.7-x-y)CoxZryB6.2纳米晶永磁材料. 在快淬速度为18 m·s-1时, 经710 ℃/4 min晶化处理后, Nd10.1Fe76Co5Zr2.7B6.2粘结磁体出现最佳磁性能, 分别为Br=0.67 T, JHc=754 kA·m-1, (BH)max=75.1 kJ·m-3. 粘结磁体的磁性能对于快淬速度非常敏感. 随着合金元素的添加, 出现最佳磁性能的快淬速度逐渐减少. 为了得到最佳磁性能, 除了选择合适的快淬速度外, 添加合适的合金元素变得非常重要.添加Zr元素抑制了亚稳相的析出以及细化了晶粒尺寸.比较不加Zr元素的Nd10.1Fe78.7Co5B6.2, 添加Zr元素晶化温度增加了9 ℃, 表明Zr元素也增加了快淬薄带的热稳定性.  相似文献   

5.
采用快淬、热处理及模压成形工艺,制备了成分为Nd10.5Fe78.4-xCo5ZrxB6.1(x=0,1.0,1.5,2.0,2.5)的5种粘结永磁体.采用XRD,DTA,AFM等方法对合金的组织结构、晶化行为进行了研究.结果表明:Zr含量的增加可提高材料的非晶形成能力;当Zr添加到一定量时,形成高熔点的Fe2Zr相,产生细化晶粒的作用;添加Zr元素显著地提高了合金的矫顽力,改善了退磁曲线矩形度,从而提高了最大磁能积.Nd10.5Fe78.4-xCo5ZrxB6.1永磁体在x=2时获得最佳磁性能,Br=0.659 T,Hcj=628KA·m-1,Hcb=419KA·m-1,(BH)m=73KJ·m-3.  相似文献   

6.
采用铜模吸铸制备了厚度为0.8 mm,成分为Nd9Fe81-x-yTi4C2BxNby(x=11,13,15;y=0,4)的Nd2Fe14B/Fe3B型纳米复合永磁合金块体样品,研究了添加Nb对合金铸态组织及其晶化行为的影响,并测试了其磁性能。结果表明:在合金中添加4%(原子分数)Nb元素,不仅能抑制吸铸样品表面Nd2Fe23B3软磁性相、Nd1.1Fe4B4非磁性相和未知相的形成,导致Nd2Fe14B,Fe3B和α-Fe相的相对量增加,而且促使样品内部在非晶基体上形成了少量的Nd2Fe14B和α-Fe,Fe3B纳米晶。添加了Nb的合金吸铸样品表现出一定的硬磁性,其中Nd9Fe66Ti4C2B15Nb4吸铸样品具有最高的矫顽力(Hci=116.66 k A·m-1);添加4%(原子分数)Nb使得合金在晶化过程中由原来的异相同温一步晶化转变为两步晶化,且初始晶化温度Tx均明显降低,两个放热峰的ΔTpx均增大。  相似文献   

7.
研究了Zr元素对Nd10.5Fe78-xCo5ZrxB6.5(x=0,2,4,5)纳米晶双相永磁材料的磁性能与结构的影响。结果表明:适量地添加2%的Zr可以显著增强合金的内禀矫顽力,而且可以有效抑制α—Fe和Nd2Fe14B晶粒的长大,细化晶粒,改善结构。在Nd10.5Fe76Co5Zr2B6.5(x=2)合金中可以获得分布更加均匀、晶粒尺寸约为20nm的微观结构。  相似文献   

8.
研究了Ti和C添加对Nd9.4Fe79.6-xTixB11-yCy(x=0,1,2,4,6;y=0.5,1.5,3)合金晶化方式、显微结构和磁性能的影响规律。结果表明,适量Ti和C添加改变了合金的晶化方式,使-αFe相和Nd2Fe14B相同时从Nd9.4Fe75.6Ti4B10.5C0.5非晶基体中析出,避免了先析出相晶粒的长大,利于获得细小均匀的显微结构。适量Ti和C添加的Nd-Fe-B-Ti-C非晶合金在退火过程中易析出细小弥散的TiC和TiB2相,可作为形核质点促进形核,且可抑制晶粒长大,最终形成细小均匀的显微结构。综合性能较佳的Nd9.4Fe75.6Ti4B10.5C0.5合金退磁曲线具有优异的方形度,最佳退火条件下合金薄带的剩磁Br为0.91 T,矫顽力iHc为976 kA.m-1,磁能积(BH)max达135 kJ.m-3。文章最后对Ti和C添加合金微结构的形成机制进行了探讨。  相似文献   

9.
用熔体快淬法制备了高性能纳米双相耦合Nd2Fe14B/α-Fe磁体, 研究了快淬速率和热处理工艺对其磁性能和微结构的影响. 实验结果表明, 控制快淬速率在12 m*s-1时, 可直接得到显微组织均匀、α-Fe相粒子细小且均匀分布的纳米双相耦合Nd2Fe14B/α-Fe磁体. 低温退火处理后可消除由少量非晶相带来的成分不均匀性, 其最高磁性能为iHc=432.2 kA*m-1, Jr=1.08 T, (BH)max=115 kJ*m-3. 快淬速率提高, 非晶相体积分数增加, 在高温晶化热处理时软硬磁相析出不均匀, 个别α-Fe相粒子奇异长大, 尺寸达到100 nm左右, 这不利于软硬磁相间的交换耦合作用, 有损磁性能.  相似文献   

10.
采用铜模吸铸及随后的退火处理制备了厚度为0.8 mm,成分为Nd9Fe83-xTi4C4Bx(x=10~15)的Nd2Fe14B/Fe3B型纳米复相磁体,对其组织演变和磁性能进行了研究。结果表明:在铸态合金中,x=10的合金微观组织主要由Nd2Fe14B,Fe3B,α-Fe和TiC相构成。而x=11~15的合金中除含上述各相外,还出现了Nd2Fe23B3相、未知相和非晶相,且随着B含量的增加,它们在合金中的相对含量有不同程度的增加;退火过程中,随着合金中亚稳相和非晶相的转化,Nd2Fe14B,Fe3B和α-Fe相对含量增加,但不同B含量合金的相结构变化差异明显,导致退火后磁体具有不同的磁性能。其中,x=12的合金在680℃退火5 min后获得了最佳磁性能:Br=0.63 T,iHc=98.12 kA·m-1,(BH)max=22.79 kJ·m-3。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号