首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The production of fermentable sugars from rice hull was studied by dilute acid pretreatment and enzymatic saccharification. Rice hull (15%, w/v) was pretreated by 1% (v/v) sulfuric acid at high temperature (120∼160 °C) for 15, 30, 45, and 60 min, respectively. The maximum sugar concentration from rice hull in the prehydrolysate was obtained at 140 °C for 30 min, but the enzymatic saccharification yield from the corresponding pretreated rice hull is not high. To another aspect, the maximum enzymatic saccharification yield was achieved at 160 °C for 60 min, while the recovery of fermentable sugars was the poorest. To take account of fermentable sugars from pretreatment and enzymatic saccharification, the maximum yield of sugars was obtained only when rice hull was treated at 140 °C for 30 min. Under this condition, 72.5% (w/w) of all sugars generated from the raw material can be recovered. The kinetic study on the enzymatic saccharification of dilute acid pretreated rice hull was also performed in this work by a modified Michaelis–Menten model and a diffusion-limited model. After calculation by a linear and a non-linear regression analysis, both models showed good relation with the experimental results.  相似文献   

2.
Fuel ethanol can be produced from softwood through hydrolysis in an enzymatic process. Prior to enzymatic hydrolysis of the softwood, pretreatment is necessary. In this study, two-step steam pretreatment employing dilute H2SO4 impregnation in the first step and SO2 impregnation in the second step, to improve the overall sugar and ethanol yield, was investigated. The first pretreatment step was performed under conditions of low severity (180°C, 10 min, 0.5% H2SO4) to optimize the amount of hydrolyzed hemicellulose. In the second step, the washed solid material from the first pretreatment step was impregnated with SO2 and pretreated under conditions of higher severity to make the cellulose more accessible to enzymatic attack, as well as to hydrolyze a portion of the cellulose. A wide range of conditions was used in the second step to determine the most favorable combination. The temperatures investigated were between 190 and 230°C, the residence times were 2, 5, and 10 min; and the SO2 concentration was 3%. The effect of pretreatment was assessed by both enzymatic hydrolysis of the solids and by simultaneous saccharification and fermentation (SSF) of the whole slurry, after the second pretreatment step. For each set of pretreatment conditions, the liquid fraction was also fermented to determine any inhibitory effects. Ethanol yield using the SSF configuration reached 66% of the theoretical value for pretreatment conditions in the second step of 210°C and 5 min. The sugar yield using the separate hydrolysis and fermentation configuration reached 71% for pretreatment conditions of 220°C and 5 min.  相似文献   

3.
Whole treechips obtained from softwood forest thinnings were pretreated via single-and two-stage dilute-sulfuric acid pretreatment. Whole-tree chips were impregnated with dilute sulfuric acid and steam treated in a 4-L steam explosion reactor. In single-stage pretreatment, wood chips were treated using a wide range of severity. In two-stage pretreatment, the first stage was carried out at low severity tomaximize hemicellulose recovery. Solubilized sugars were recovered from the first-stage prehydrolysate by washing with water. In the second stage, water-insoluble solids from first-stage prehydrolysate were impregnated with dilute sulfuric acid, then steam treated at more severe conditions to hydrolyze a portion of the remaining cellulose to glucose and to improve the enzyme digestibility. The total sugar yields obtained after enzymatic hydrolysis of two-stage dilute acid-pretreated samples were compared with sugar yields from single-stage pretreatment. The overall sugar yield from two-stage dilute-acid pretreatment was approx 10% higher, and the net enzyme requirement was reduced by about 50%. Simultaneous saccharification and fermentation using an adapted Saccharomyces cerevisiae yeast strain further improved cellulose conversion yield and lowered the enzyme requirement.  相似文献   

4.
Forest biomass is a promising resource for future biofuels and bioproducts. Pre-pulping extraction of hemicellulose by alkaline (Green Liquor) pretreatment produces a neutral-pH extract containing hemicellulose-derived oligomers. A near-term option for use of this extract is to hydrolyze the oligomers to fermentable monomer sugars. Chips of mixed northern hardwoods were cooked in a rocking digester at 160 °C for 110 min in Green Liquor at a concentration of 3% Na2O equivalent salts on dry wood. The mass of wood extracted into the Green Liquor extract was approximately 11.4% of the debarked wood mass, which resulted in a dilute solution of oligomeric hemicelluloses sugars. The concentration of the extract was increased through partial evaporation prior to hydrolysis. Dilute sulfuric acid hydrolysis was applied at conditions ranging from 100 to 160 °C, 2% to 6% (w/v) H2SO4, and 2- to 258-min residence time. The maximum fermentable sugar concentration achieved from evaporated extract was 10.7 g/L, representing 90.7% of the maximum possible yield. Application of the biomass pretreatment severity function to the hydrolysis results proved to offer a relatively poor prediction of temperature and reaction time interaction. The combined severity function, which incorporates reaction time, temperature, and acid concentration, did prove to provide a useful means of trading off the combined effects of these three variables on total sugar yields.  相似文献   

5.
Single-stage cocurrent dilute acid pretreatments were carried out on yellow poplar (Liriodendron tulipifera) sawdust using an as-installed and short residence time modified pilot-scale Sunds hydrolyzer and a 4-L bench-scale NREL digester (steam explosion reactor). Pretreatment conditions for the Sunds hydrolyzer, installed in the NREL process development unit (PDU), which operates at 1 t/d (bone-dry t) feed rate, spanned the temperature range of 160 – 210°C, 0.1 – 1.0% (w/w) sulfuric acid, and 4-10-min residence times. The batch pretreatments of yellow poplar sawdust in the bench-scale digester were carried out at 210 and 230°C, 0.26% (w/w) sulfuric acid, and 1-, 3-, and 4-min residence times. The dilute acid prehydrolysis solubilized more than 90% of the hemicellulose, and increased the enzymatic digestibility of the cellulose that remained in the solids. Compositional analysis of the pretreated solids and liquors and mass balance data show that the two pretreatment devices had similar pretreatment performance.  相似文献   

6.
Pretreatment of poplar bark with a combination of sulfuric acid (3%, w/w, H2SO4) and gamma irradiation (0–1000 kGy) was performed in an attempt to enhance enzymatic hydrolysis for bioethanol production. The yields of reducing sugar were slightly increased with an increasing irradiation dose, ranging from 35.4% to 51.5%, with a 56.1% reducing sugar yield observed after dilute acid pretreatment. These results clearly showed that soluble sugars were released faster and to a greater extent in dilute acid-pretreated poplar bark than in gamma irradiation-pretreated bark. When combined pretreatment was carried out, a drastic increase in reducing sugar yield (83.1%) was found compared with individual pretreatment, indicating the possibility of increasing the convertibility of poplar bark following combined pretreatment. These findings are likely associated with cellulose crystallinity, lignin modification, and removal of hemicelluloses.  相似文献   

7.
Sorghum is a tropical grass grown primarily in semiarid and drier parts of the world, especially areas too dry for corn. Sorghum production also leaves about 58 million tons of by-products composed mainly of cellulose, hemicellulose, and lignin. The low lignin content of some forage sorghums such as brown midrib makes them more digestible for ethanol production. Successful use of biomass for biofuel production depends on not only pretreatment methods and efficient processing conditions but also physical and chemical properties of the biomass. In this study, four varieties of forage sorghum (stems and leaves) were characterized and evaluated as feedstock for fermentable sugar production. Fourier transform infrared spectroscopy and X-ray diffraction were used to determine changes in structure and chemical composition of forage sorghum before and after pretreatment and the enzymatic hydrolysis process. Forage sorghums with a low syringyl/guaiacyl ratio in their lignin structure were easy to hydrolyze after pretreatment despite the initial lignin content. Enzymatic hydrolysis was also more effective for forage sorghums with a low crystallinity index and easily transformed crystalline cellulose to amorphous cellulose, despite initial cellulose content. Up to 72% hexose yield and 94% pentose yield were obtained using modified steam explosion with 2% sulfuric acid at 140 °C for 30 min and enzymatic hydrolysis with cellulase (15 filter per unit (FPU)/g cellulose) and β-glucosidase (50 cellobiose units (CBU)/g cellulose).  相似文献   

8.
This paper investigates the efficiency of the organic acids on the pretreatment of an industrially generated cotton gin waste for the removal of lignin, thereby releasing cellulose and hemicellulose as fermentable sugar components. Cotton gin waste was pretreated with various organic acids namely lactic acid, oxalic acid, citric acid, and maleic acid. Among these, maleic acid was found to be the most efficient producing maximum xylose sugar (126.05?±?0.74 g/g) at the optimum pretreatment condition of 150 °C, 500 mM, and 45 min. The pretreatment efficiency was comparable to the conventional dilute sulfuric acid pretreatment. A lignin removal of 88% was achieved by treating maleic acid pretreated biomass in a mixture of sodium sulfite and sodium chlorite. The pretreated biomass was further evaluated for the release of sugar by enzymatic hydrolysis and subsequently bioethanol production from hydrolysates. The maximum 686.13 g/g saccharification yield was achieved with maleic acid pretreated biomass which was slightly higher than the sulfuric acid (675.26 g/g) pretreated waste. The fermentation of mixed hydrolysates(41.75 g/l) produced 18.74 g/l bioethanol concentration with 2.25 g/l/h ethanol productivity and 0.48 g/g ethanol yield using sequential use of Saccharomyces cerevisiae and Pichia stipitis yeast strains. The production of bioethanol was higher than the ethanol produced using co-culture in comparison to sequential culture. Thus, it has been demonstrated that the maleic acid pretreatment and fermentation using sequential use of yeast strains are efficient for bioethanol production from cotton gin waste.  相似文献   

9.
Pretreatment of corn stover with dilute sulfuric acid at moderate temperature was investigated, and glucan digestibility by Cellic CTec2 and Celluclast on the pretreated biomass was compared. Pretreatments were carried out from 60 to 180 min at the temperature from 105 to 135 °C, with acid concentrations ranging from 0.5 to 2 % (w/v). Significant portion of xylan was removed during pretreatment, and the glucan digestibility by CTec2 was significantly better than that by Celluclast in all cases. Analysis showed that glucan digestibility by both two enzymes correlated directly with the extent of xylan removal in pretreatment. Confidence interval was built to give a more precise range of glucan conversion and to test the significant difference among pretreatment conditions. Response surface model was built to obtain the optimal pretreatment condition to achieve high glucan conversion after enzymatic hydrolysis. Considering the cost and energy savings, the optimal pretreatment condition of 1.75 % acid for 160 min at 135 °C was determined, and glucan conversion can achieve the range from 72.86 to 76.69 % at 95 % confidence level after enzymatic hydrolysis, making total glucan recovery up to the range from 89.42 to 93.25 %.  相似文献   

10.
Biological conversion of biomass into fuels and chemicals requires hydrolysis of the polysaccharide fraction into monomeric sugars prior to fermentation. Hydrolysis can be performed enzymatically or with mineral acids. In this study, dilute sulfuric acid was used as a catalyst for the pretreatment of rapeseed straw. The purpose of this study is to optimize the pretreatment process in a 15-mL bomb tube reactor and investigate the effects of the acid concentration, temperature, and reaction time. These parameters influence hemicellulose removal and production of sugars (xylose, glucose, and arabinose) in the hydrolyzate as well as the formation of by-products (furfural, 5-hydroxymethylfurfural, and acetic acid). Statistical analysis was based on a model composition corresponding to a 33 orthogonal factorial design and employed the response surface methodology to optimize the pretreatment conditions, aiming to attain maximum xylan, mannan, and galactan (XMG) extraction from hemicellulose of rapeseed straw. The obtained optimum conditions were: H2SO4 concentration of 1.76% and temperature of 152.6 °C with a reaction time of 21 min. Under these optimal conditions, 85.5% of the total sugar was recovered after acid hydrolysis (78.9% XMG and 6.6% glucan). The hydrolyzate contained 1.60 g/L glucose, 0.61 g/L arabinose, 10.49 g/L xylose, mannose, and galactose, 0.39 g/L cellobiose, 0.94 g/L fructose, 0.02 g/L 1,6-anhydro-glucose, 1.17 g/L formic acid, 2.94 g/L acetic acid, 0.04 g/L levulinic acid, 0.04 g/L 5-hydroxymethylfurfural, and 0.98 g/L furfural.  相似文献   

11.
Liquid hot water (LHW) pretreatment is an efficient chemical-free strategy for enhancing enzymatic digestibility of lignocellulosic biomass for conversion to fuels and chemicals in biorefinery. In this study, effects of LHW on removals of hemicelluloses and lignin from corncobs were studied under varying reaction conditions. LHW pretreatment at 160 °C for 10 min promoted the highest levels of hemicellulose solubilization into the liquid phase, resulting into the maximized pentose yield of 58.8% in the liquid and more than 60% removal of lignin from the solid, with 73.1% glucose recovery from enzymatic hydrolysis of the pretreated biomass using 10 FPU/g Celluclast?. This led to the maximal glucose and pentose recoveries of 81.9 and 71.2%, respectively, when combining sugars from the liquid phase from LHW and hydrolysis of the solid. Scanning electron microscopy revealed disruption of the intact biomass structure allowing increasing enzyme’s accessibility to the cellulose microfibers which showed higher crystallinity index compared to the native biomass as shown by x-ray diffraction with a marked increase in surface area as revealed by BET measurement. The work provides an insight into effects of LHW on modification of physicochemical properties of corncobs and an efficient approach for its processing in biorefinery industry.  相似文献   

12.
In this study, sugarcane bagasse was pretreated with ammonium hydroxide, and the effectiveness of the pretreatment on enzyme hydrolysis and ethanol production was examined. Bagasse was soaked in ammonium hydroxide and water at a ratio of 1:0.5:8 for 0–4 days at 70 °C. Approximately, 14–45 % lignin, 2–6 % cellulose, and 13–22 % hemicellulose were removed during a 0.5- to 4-day ammonia soaking period. The highest glucan conversion of sugarcane bagasse soaked in dilute ammonia at moderate temperature by cellulase was accomplished at 78 % with 75 % of the theoretical ethanol yield. Under the same conditions, untreated bagasse resulted in a cellulose digestibility of 29 and 27 % of the theoretical ethanol yield. The increased enzymatic digestibility and ethanol yields after dilute ammonia pretreatment was related to a combined effect of the removal of lignin and increase in the surface area of fibers.  相似文献   

13.
Among the available agricultural byproducts, corn stover, with its yearly production of 10 million t (dry basis), is the most abundant promising raw material for fuel ethanol production in Hungary. In the United States, more than 216 million to fcorn stover is produced annually, of which a portion also could possibly be collected for conversion to ethanol. However, a network of lignin and hemicellulose protects cellulose, which is the major source of fermentable sugars in corn stover (approx 40% of the dry matter [DM]). Steam pretreatment removes the major part of the hemicellulose from the solid material and makes the cellulose more susceptible to enzymatic digestion. We studied 12 different combinations of reaction temperature, time, and pH during steam pretreatment. The best conditions (200°C, 5 min, 2% H2SO4) increased the enzymatic conversion (from cellulose to glucose) of corn stover more then four times, compared to untreated material. However, steam pretreatment at 190°C for 5 min with 2% sulfuric acid resulted in the highest overall yield of sugars, 56.1 g from 100 g of untreated material (DM), corresponding to 73% of the theoretical. The liquor following steam explosion was fermented using Saccharomyces cerevisiae to investigate the inhibitory effect of the pretreatment. The achieved ethanol yield was slightly higher than that obtained with a reference sugar solution. This demonstrates that baker's yeast could adapt to the pretreated liquor and ferment the glucose to ethanol efficiently.  相似文献   

14.
An investigation was conducted to study the effect of solvent composition and temperature on the efficiency of pretreatment prior to enzymatic hydrolysis. The aim was to improve the sugar recovery of oil palm empty fruit bunch fiber (EFBF) through enzymatic hydrolysis. Two types of pretreatments, namely, acidified-glycerol (AC-g) pretreatment and alkaline-glycerol (AL-g) pretreatment were conducted. The study proved that AL-g pretreatment promoted higher delignification and enzymatic hydrolyzed sugar yield compared to AC-g pretreatment. Total sugar recovery of 81.44 and 96.55 % was achieved from AL-g pretreatment at 80 and 120 °C respectively, following the enzymatic hydrolysis. However, downstream industrial processes, involving enzyme treatment along the processing line have the preference of acidic condition. Thus, AC-g pretreatment was favorable. Approximately 51.74 % total sugar had been recovered successfully from enzymatic hydrolysis of EFBF after 3 h of pretreatment by using solvent comprising of 50 % acetic acid and 80 % aqueous glycerol at a ratio of 97:3 at 120 °C.  相似文献   

15.
Two-step steam pretreatment of softwood was investigated with the aim of improving the enzymatic digestibility for ethanol production. In the first step, softwood was impregnated with SO2 and steam pretreated at different severities. The first step was performed at low severity to hydrolyze the hemicellulose and release the sugars into the solution. The combination of time and temperature that yielded the highest amount of hemicellulosic sugars in the solution was determined. In the second step, the washed solid material from the optimized first step was impregnated once more with SO2 and steam pretreated under more severe conditions to enhance the enzymatic digestibility. The investigated temperature range was between 180 and 220°C, and the residence times were 2, 5 and 10 min. The effectiveness of pretreatment was assessed by both enzymatic hydrolysis of the solids and simultaneous saccharification and fermentation (SSF) of the whole slurry after the second pretreatment step, in the presence of antibiotics. For each pretreatment combination, the liquid fraction was fermented to determine any inhibiting effects. At low severity in the second pretreatment step, a high conversion of cellulose was obtained in the enzymatic hydrolysis step, and at a high severity a high conversion of cellulose was obtained in the second pretreatment step. This resulted in an overall yield of sugars that was nearly constant over a wide range of severity. Compared with the one-step steam pretreatment, the two-step steam pretreatment resulted in a higher yield of sugar and in a slightly higher yield of ethanol. The overall sugar yield, when assessed by enzymatic hydrolysis, reached 80%. In the SSF configuration, an overall ethanol yield of 69% was attained.  相似文献   

16.
Saline crops and autoclaved municipal organic solid wastes were evaluated for their potential to be used as feedstock for fermentable sugar production through dilute acid pretreatment and enzymatic hydrolysis. The saline crops included two woods, athel (Tamarix aphylla L) and eucalyptus (Eucalyptus camaldulensis), and two grasses, Jose tall wheatgrass (Agropyron elongatum), and creeping wild rye (Leymus triticoides). Each of the biomass materials was first treated with dilute sulfuric acid under selected conditions (acid concentration =1.4% (w/w), temperature =165 degrees C, and time =8 min) and then treated with the enzymes (cellulases and beta-glucosidase). The chemical composition (cellulose, hemicellulose, and lignin contents) of each biomass material and the yield of total and different types of sugars after the acid and enzyme treatment were determined. The results showed that among the saline crops evaluated, the two grasses (creeping wild rye and Jose tall wheatgrass) had the highest glucose yield (87% of total cellulose hydrolyzed) and fastest reaction rate during the enzyme treatment. The autoclaved municipal organic solid wastes showed reasonable glucose yield (64%). Of the two wood species evaluated, Athel has higher glucose yield (60% conversion of cellulose) than eucalyptus (38% conversion of cellulose).  相似文献   

17.
Pretreatment and enzymatic saccharification of corn fiber   总被引:14,自引:0,他引:14  
Corn fiber consists of about 20% starch, 14% cellulose, and 35% hemicellulose, and has the potential to serve as a low-cost feedstock for production of fuel ethanol. Several pretreatments (hot water, alkali, and dilute, acid) and enzymatic saccharification procedures were evaluated for the conversion of corn fiber starch, cellulose, and hemicellulose to monomeric sugars. Hot water pretreatment (121°C, 1 h) facilitated the enzymatic sacch arification of starch and cellulose but not hemicellulose. Hydrolysis of corn fiber pretreated with alkali un dersimilar conditions by enzymatic means gave similar results. Hemicellulose and starch components were converted to monomeric sugars by dilute H2SO4 pretreatment (0.5–1.0%, v/v) at 121°C. Based on these findings, a method for pretreatment and enzymatic saccharification of corn fiber is presented. It in volves the pretreatment of corn fiber (15% solid, w/v) with dilute acid (0.5% H2SO4, v/v) at 121°C for 1 h, neutralization to pH 5.0, then saccharification of the pretreated corn fiber material with commercial cellulase and β-glucosidase preparations The yield of monomeric sugars from corn fiber was typically 85–100% of the theoretical yield. Names are necessary to report factually on available data; however, the USDA neither guarantees nor warrants the standard of the product, and the use of the name by USDA implies no approval of the product to the exclusion of others that may also be suitable.  相似文献   

18.
Hot-compressed water (HCW) is among several cost-effective pretreatment processes of lignocellulosic biomass for enzymatic hydrolysis. The present work investigated the characteristics of HCW pretreatment of rice straw including sugar production and inhibitor formation in the liquid fraction and enzymatic hydrolysis of pretreated material. Pretreatment was carried out at a temperature ranging from 140 to 240 °C for 10 or 30 min. Soluble oligosaccharides were found to constitute almost all the components of total sugars in the liquid fraction. The maximal production of total glucose at 180 °C and below accounted for 4.4–4.9% of glucan in raw material. Total xylose production peaked at 180 °C, accounting for 43.3% of xylan in raw material for 10-min pretreatment and 29.8% for 30-min pretreatment. The production of acetic acid increased at higher temperatures and longer treatment time, indicating more significant disruption of lignocellulosic structure, and furfural production achieved the maximum (2.8 mg/ml) at 200 °C for both 10-min and 30-min processes. The glucose yield by enzymatic hydrolysis of pretreated rice straw was no less than 85% at 180 °C and above for 30-min pretreatment and at 200 °C and above for 10-min pretreatment. Considering sugar recovery, inhibitor formation, and process severity, it is recommended that a temperature of 180 °C for a time of 30 min can be the most efficient process for HCW pretreatment of rice straw.  相似文献   

19.
Chemical pretreatment of lignocellulosic biomass has been extensively investigated for sugar generation and subsequent fuel production. Alkaline pretreatment has emerged as one of the popular chemical pretreatment methods, but most attempts thus far have utilized NaOH for the pretreatment process. This study aimed at investigating the potential of potassium hydroxide (KOH) as a viable alternative alkaline reagent for lignocellulosic pretreatment based on its different reactivity patterns compared to NaOH. Performer switchgrass was pretreated at KOH concentrations of 0.5–2 % for varying treatment times of 6–48 h, 6–24 h, and 0.25–1 h at 21, 50, and 121 °C, respectively. The pretreatments resulted in the highest percent sugar retention of 99.26 % at 0.5 %, 21 °C, 12 h while delignification up to 55.4 % was observed with 2 % KOH, 121 °C, 1 h. Six pretreatment conditions were selected for subsequent enzymatic hydrolysis with Cellic CTec2® for sugar generation. The pretreatment condition of 0.5 % KOH, 24 h, 21 °C was determined to be the most effective as it utilized the least amount of KOH while generating 582.4 mg sugar/g raw biomass for a corresponding percent carbohydrate conversion of 91.8 %.  相似文献   

20.
Pretreatment is an essential step in biorefineries for improving digestibility of recalcitrant agricultural feedstocks prior to enzymatic hydrolysis to composite sugars, which can be further converted to fuels and chemicals. In this study, autohydrolysis by compressed liquid hot water (LHW) pretreatment of various tropical agricultural residues including sugarcane bagasse (BG), rice straw (RS), corn stover (CS), and empty palm fruit bunch (EPFB) was investigated. It was found that LHW pretreatment at 200 °C for 5–20 min resulted in high levels of hemicellulose solubilization into the liquid phase and marked improvement on enzymatic digestibility of the solid cellulose-enriched residues. The maximal yields of glucose and pentose were 409.8–482.7 mg/g and 81.1–174.0 mg/g of pretreated substrates, respectively. Comparative analysis based on severity factor showed varying susceptibility of biomass to LHW in the order of BG> RS> CS> EPFB. Structural analysis revealed surface modification of the pretreated biomass along with an increase in crystallinity index. Overall, 75.7–82.3 % yield of glucose and 27.4–42.4 % yield of pentose from the dried native biomass was recovered in the pretreated solid residues, while 18.3–29.7 % of pentoses were recovered in the liquid phase with dehydration by-product concentration under the threshold for ethanologens. The results suggest the potential of LHW as an efficient pretreatment strategy for implementation in biorefineries operated using various seasonal agricultural feedstocks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号