首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this work, poly((PMMA‐b‐VI)‐co‐AA) (MMA = methyl methacrylate; VI = 1‐vinylimidazole; AA = acrylic acid) hydrogels and poly((PMMA‐b‐VI)‐co‐AA)/TPU (TPU = thermoplastic polyurethane) IPN (interpenetrating polymer networks) hydrogels have been fabricated via versatile infrared laser ignited frontal polymerization by using poly(PMMA‐b‐VI) macromonomer as the mononer. The frontal velocity and Tmax (the highest temperature that the laser beam detected at a fixed point) can be adjusted by varying monomer weight ratios, the concentration of BPO (BPO = benzoyl peroxide) and the amount of TPU. Moreover, the addition of TPU enhances the reactant viscosity to suppress the “fingering” of frontal polymerization (FP) and decrease Tmax of the reaction, providing a new inert carrier (TPU) to assist FP. Through the characterization of Fourier transform‐infrared spectroscopy (FT‐IR), scanning electron microscope (SEM), and differential scanning calorimetry (DSC), the desired structure can be proved to exist in the IPN hydrogels. Furthermore, poly((PMMA‐b‐VI)‐co‐AA)/TPU IPN hydrogels possesses more excellent mechanical behaviors than hydrogels without IPN structure. Besides, the poly((PMMA‐b‐VI)‐co‐AA) hydrogels present splendid sensitive properties toward substances of different flavor including sourness (CA, citric acid or GA, gluconic acid), umami (SG, sodium glutamate), saltiness (SC, sodium chloride), sweetness (GLU, glucose), enabling their potential as artificial tongue‐like sensing materials. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 1210–1221  相似文献   

2.
We report the synthesis and multi-sensitive performances of a novel type of poly(N-vinylimidazole-co-N-methylolacrylamide) (poly(VI-co-NMA)) hydrogels. These hydrogels behave excellent electric-sensitive properties and reversible bending behaviors. The influence of various parameters such as VI concentration, electric voltage, pH, and ionic strength on the electric-sensitive properties was thoroughly investigated. To obtain electrochromic hydrogels, we further prepared colloidal crystal (CC)-loaded hydrogels in which the color of the CC can be tuned by the bending behavior of the hydrogels. Moreover, these as-prepared hydrogels present excellent adsorption performances toward quantum dots, and the photoluminescence (PL) of CdTe-doped poly(VI-co-NMA) hydrogels was investigated. We found that the PL wavelengths of the CdTe-doped hydrogels could be switched reproducibly by altering the process of swelling and deswelling. These multi-functional hydrogels coupling with the characteristics of electrochromism and PL response confer them a variety of potential applications in sensors.  相似文献   

3.
We report a new facile strategy for quickly synthesizing pH sensitive poly(VI‐co‐HEA) hydrogels (VI = N‐vinylimidazole; HEA = 2‐hydroxyethyl acrylate) by frontal polymerization. The appropriate amounts of VI, HEA, and ammonium persulfate (APS)/N,N,N′,N′‐tetramethylethylenediamine (TMEDA) couple redox initiator were mixed together at ambient temperature in the presence of glycerol as the solvent medium. Frontal polymerization (FP) was initiated by heating the upper side of the mixture with a soldering iron. Once initiated, no further energy was required for the polymerization to occur. The dependence of the front velocity and front temperature on the VI/HEA weight ratios were investigated. The pH sensitive behavior, morphology, and heavy metal removal study of poly(VI‐co‐HEA) hydrogels prepared via FP were comparatively investigated on the basis of swelling measurements, scanning electron microscopy, and inductively coupling plasma spectrometer. Results show that the poly(VI‐co‐HEA) hydrogels prepared via FP exhibit good pH sensitivity and adsorption capacity. The FP can be exploited as an alternative means for synthesis of pH sensitive hydrogels in a fast and efficient way. The as‐prepared hydrogels can be applied to remove heavy metals. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 4005–4012, 2010  相似文献   

4.
Novel microstructured and pH sensitive poly(acryliac acid-co-2-hydroxyethyl methacrylate)/poly(vinyl alcohol) (P(AA-co-HEMA)/PVA) interpenetrating network (IPN) hydrogel films were prepared by radical precipitation copolymerization and sequential IPN technology. The first P(AA-co-HEMA) network was synthesized in the present of PVA aqueous solution by radical initiating, then followed by condensation reaction (Glutaraldehyde as crosslinking agent) within the resultant latex, it formed multiple IPN microstructured hydrogel film. The film samples were characterized by IR, SEM and DSC. Swelling and deswelling behaviors and mechanical property showed the novel multiple IPN nanostuctured film had rapid response and good mechanical property. The IPN films were studied as controlled drug delivery material in different pH buffer solution using cationic compound, crystal violet as a model drug. The drug release followed different release mechanism at pH 4.0 and pH 7.4, respectively.  相似文献   

5.
In this work, we report a series of poly(itaconic acid‐co‐acrylic acid‐co‐acrylamide) (poly(IA‐co‐AAc‐co‐AAm)) hydrogels via frontal polymerization (FP). FP starts on the top of the reaction mixture with aid of heating provided from soldering iron gun. Once polymerization initiated, no further energy is required to complete the process. The influences of IA/AAc weight ratios on frontal velocities, temperatures, and conversions on the reaction time are thoroughly investigated and discussed where the amount of AAm monomer remains constant. Fourier transform‐infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), scanning electron microscope (SEM), dynamic mechanical analysis, and the swelling measurement are applied to characterize the as‐synthesized poly(IA‐co‐AAc‐co‐AAm) hydrogels. Interestingly, the swelling ratios of the hydrogels are changed with different IA/AAc contents, and the maximum swelling ratios are ~4439% in water. SEM images describe highly porous morphologies and explain good swelling capabilities. Moreover, the poly(IA‐co‐AAc‐co‐AAm) hydrogels exhibit superior pH‐responsive ability. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019 , 57, 2214–2221  相似文献   

6.
Interpenetrating polymer network (IPN) strategy was developed to fabricate novel hydrogels composed of cellulose and poly(N‐isopropylacrylamide) (PNIPAAm) with high mechanical strength and adjustable thermosensitivity. Cellulose hydrogels were prepared by chemically cross‐linking cellulose in NaOH/urea aqueous solution, which were employed as the first network. The second network was subsequently obtained by in situ polymerization/cross‐linking of N‐isopropylacrylamide in the cellulose hydrogels. The results from FTIR and solid 13C NMR indicated that the two networks co‐existed in the IPN hydrogels, which exhibited uniform porous structure, as a result of good compatibility. The mechanical and swelling properties of IPN hydrogels were strongly dependent on the weight ratio of two networks. Their temperature‐sensitive behaviors and deswelling kinetics were also discussed. This work created double network hydrogels, which combined the advantages of natural polymer and synthesized PNIPAAm collectively in one system, leading to the controllable temperature response and improvement in the physical properties. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

7.
Frontal polymerization (FP) is applied for the synthesis of β‐cyclodextrin/poly(vinylimidazole‐co‐N‐vinylcaprolactam‐co‐acrylic acid) (β‐CD/P(VI‐co‐NVCL‐co‐AA)) copolymers. The dependence of frontal velocity and temperature on the initiator and cross‐linker are discussed. The synthesized copolymers have been characterized by Fourier transform infrared (FTIR), thermogravimetric analysis (TGA), and scanning electron microscopy (SEM). The thermo‐pH dual‐stimuli responsive behavior of the hydrogel is determined by swelling measurement at different temperatures and pH values. Besides, the hydrogels show intrinsic self‐healing behavior and their healing efficiency is determined by the mechanical tests. Interestingly, we integrate FP with microfluidic technology, which may realize the execution of FP under continuous condition. Such simple microfluidics‐FP integrated approach has both methodological and practical value for the synthesis of functional materials. This paper mainly presents the synthesis and characterization of β‐cyclodextrin/poly(vinylimidazole‐co‐N‐vinylcaprolactam‐co‐acrylic acid) (β‐CD/P(VI‐co‐NVCL‐co‐AA)) copolymers by using thermal frontal polymerization (TFP). Hydrogels were found to be self‐healing with good mechanical performance and show dual thermo‐pH responsive behavior. Low‐cost, energy‐saving and efficient method of thermal frontal polymerization process was integrated with microfluidics technology to prepare supraball hydrogel. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 1412–1423  相似文献   

8.
The temperature- and pH-sensitive hydrogels, poly(N-isopropylacrylamide-co-acrylic acid) (P(NIPAM-co-AAc)), were synthesized via frontal polymerization (FP). The reaction components have been varied in order to find their influences on frontal parameters and copolymer features. The results showed that front velocity and front temperature were dependent on the initiator concentration, reactant dilution, and NIPMA/AAc molar ratio. In addition, the morphology and sensitive behavior of the FP hydrogels were mainly affected by monomers’ ratio. Namely, the pore size, swelling abilities, LCST, and response kinetics of copolymer hydrogels obviously increased with the increasing acrylic acid concentration; however, they slightly changed with varying of amounts of initiator and solvent. Finally, in comparison with the hydrogels prepared by conventional batch polymerization, the ones synthesized by frontal polymerization exhibited more homogeneous chain composition and improved microstructure and response ability.  相似文献   

9.
We report the facile synthesis of poly(VI‐co‐MAA) superabsorbent polyampholytic hydrogels (VI = N‐vinylimidazole, MAA = methacrylic acid) via plasma‐ignited frontal polymerization (PIFP). On igniting the top surface of the reactants with air plasma, frontal polymerization occurred and poly(VI‐co‐MAA) hydrogels were obtained within minutes. The preparation parameters were investigated, along with swelling capacity, morphology, and chemical structures of poly(VI‐co‐MAA) hydrogels. Interestingly, the hydrogels are superabsorbent in water and show ampholytic characteristic toward pH. Moreover, the hydrogels are able to capture cationic dyes through electrostatic interaction, offering the potential for further development as dye adsorbents for water purification. In addition, nanocomposite hydrogels were obtained by embedding quantum dots (carbon dots or CdS nanocrystals) into the polymer matrix, which endows the nanocomposite hydrogels with favorable fluorescence and potential applications in bioimaging and biosensing. The results indicate that FP can be applied as an alternative means for facile synthesis of multifunctional hydrogels with additional efficiency and energy‐saving. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 912–920  相似文献   

10.
Poly(acrylamide‐co‐acrylic acid)/polyacrylamide [P(AM‐co‐AA)/PAM] hydrogel with superporous and interpenetrating network (IPN) structure was prepared by a prepolymerization reaction and a synchronous polymerization reaction and frothing process. Scanning electron microscope (SEM) images show that the resultant hydrogel possesses abundant interconnected pores. DSC indicates that the porous structure enhances the swelling ratio and reduces the interaction between water and the hydrogel. In contrast, the IPN by PAM decreases water absorbency and enhances water retentivity. It is found that a superporous stucture in the hydrogel increases the equilibrium swelling ratio and decreases the compressive strength of the hydrogel. On the other hand, the increase in AM oligomer (oligo‐AM) amount decreases the equilibrium swelling ratio and improves the compressive strength of the hydrogel. Therefore, the two‐steps synthesis method can be used to construct a hydrogel with superporous and IPN structure. The swelling and mechanical properties of the hydrogel can be improved effectively. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

11.
Poly(N‐acryloyl glycinamide) (PNAGA)/poly(N‐isopropyl acrylamide) (PNIPAAm) interpenetrating network (IPN) hydrogels were made by UV‐light initiated radical polymerization in two‐steps. The IPN hydrogels showed a double thermoresponsive behavior due to the combination of PNIPAAm (thermophobic) and PNAGA (thermophilic) networks. Increasing the content of the thermophobic PNIPAAm network leads to a change from a broad thermophilic volume phase transition temperature of PNAGA to a thermophilic–thermophobic‐type dual transition for the prepared IPN. Due to the double thermoresponsive character of the IPN gels, the mechanical properties are dependent upon temperature as demonstrated by performing tensile tests in water at 15 and 50 °C. Furthermore, the IPN hydrogels were characterized using turbidity measurements, SEM, and the determination of the equilibrium swelling ratio. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019 , 57, 539–544  相似文献   

12.
We have successfully prepared monodispersed positively thermoresponsive core-shell hydrogel microspheres with poly(acrylamide-co-styrene) [P(AAM-co-St)] cores and IPN(interpenetrating polymer network)-based shells composed of poly(acrylamide)/poly(acrylic acid). The submicron-sized monodispersed P(AAM-co-St) core seeds were prepared by using a surfactant-free emulsion polymerization method, and the IPN-based shell layers were fabricated onto the core seeds by using a method of sequential IPN synthesis. Effects of reaction time and reaction temperature during preparation of IPN on the particle size, monodispersity, and thermoresponsive characteristics of microspheres were investigated. The results show that the sizes of particles with IPN shell layer are smaller than that of seeds, and the change of monodispersity among them is not obvious and the monodispersity of particles prepared under higher reaction temperature is higher than that of seeds and those particles prepared under lower reaction temperature. With increasing reaction time, thermoresponsive characteristics of microspheres increases. While thermoresponsive characteristics of microspheres decreases sharply with increasing reaction temperature. The results display preparation of IPN-structured microspheres is so careful to need longer reaction time and lower reaction temperature.  相似文献   

13.
谢续明 《高分子科学》2016,34(10):1261-1269
Poly(acrylamide-co-acrylic acid) nanocomposite physical (P(AAm-co-AAc)NCP) hydrogels have been prepared through the in situ free radical solution polymerization based on a “single network, dual cross-linkings” strategy. The P(AAm-co-AAc) NCP hydrogels are composed of nanobrushes of P(AAm-co-AAc) chains grafted on the surface of vinylhybrid silica nanoparticles (VSNPs). In the hydrogel system, the VSNPs act as the “analogous chemical cross-linking points” once the hydrogen bonds formed between the P(AAm-co-AAc) chains of the nanobrushes, thus leading to the fabrication of high-strength P(AAm-co-AAc) NCP hydrogels. Compared with conventional thermosensitive P(AAm-co-AAc) hydrogels, the P(AAm-co-AAc) NCP hydrogels have a broader range of phase transition temperature, which can be adjusted by altering the monomer ratio, the VSNPs concentration, the addition of urea and N,N-dimethylacrylamide (DMAAm). At the same time, the mechanical properties of the P(AAm-co-AAc) NCP hydrogels have been improved significantly by the introduction of VSNPs. Furthermore, both the phase transition and the tensile strength of the P(AAm-co-AAc) NCP hydrogels are largely influenced when Fe3+ ions are introduced as the ionic crosslinkers into the hydrogel networks.  相似文献   

14.
Summary: This paper describes a simple and facile approach to fabricate well dispersed silver nanoparticles (AgNPs) in poly[N‐isopropylacrylamide‐co‐(sodium acrylate)] hydrogels. The silver nanoparticles formed are spherical in shape with a narrow size distribution in the hydrogel networks in which the nanoparticles are stabilized by the polymer network. Uniformly dispersed silver nanoparticles were obtained with poly[N‐isopropylacrylamide‐co‐[sodium acrylate)] hydrogels, whereas a poly(N‐isopropylacrylamide)/poly(sodium acrylate) IPN gel showed aggregated nanoparticles. It is demonstrated that the hydrogel network structure determines the size and shape of the nanoparticles. These particles are more stable in the gel networks compared to other reduction methods. The hydrogel/silver nanohybrids were well characterized by XRD, UV‐vis spectrometry, scanning electron microscopy and transmission electron microscopy.

Schematic representation of the preparation of Ag nanoparticles in hydrogel networks.  相似文献   


15.
A simple two-step method was introduced to improve the hydrogel mechanical strength by forming an interpenetrating network (IPN). For this purpose, we synthesized polyacrylate/polyacrylate (PAC/PAC), polyacrylate/polyacrylamide (PAC/PAM), polyacrylamide/polyacrylamide (PAM/PAM) and polyacrylamide/poly(vinyl alcohol) (PAM/PVA) IPN hydrogels. The PAC/PAC IPN and PAC/PAM IPN hydrogels showed compressive strength of 70 and 160 kPa, respectively. For the PAM/PAM IPN and PAM/PVA IPN hydrogels, they exhibited excellent tensile strength of 1.2 and 2.8 MPa, and elongations at break of 1750% and 3300%, respectively. A strain relaxation was also observed in the case of PAM series IPN hydrogels. From FTIR, TGA and SEM measurements, we confirmed that physical entanglement, hydrogen bonds and chemical crosslinking played major roles in improving hydrogel strength and toughening. The two-step technique contributes to the understanding of ideal networks, provides a universal strategy for designing high mechanical strength hydrogels, and opening up the biomedical application of hydrogels.  相似文献   

16.
Hydrogels of poly(N,N′-dimethylacrylamide-co-2-methoxyethylacrylate) and poly(acrylamide-co-2-methoxyethylacrylate) have been synthesized by radiation polymerization in dimethylformamide solution with trimethylolpropane trimethacrylate as a crosslinker. In this work, some investigations on the in vitro release of gentamicin sulphate, an antibiotic entrapped in the hydrogels, are reported. The kinetics of drug release from hydrogels matrices were examined and the results indicate that the release for the proposed geometry practically occurs in the first 24 h. The fractional cumulative release of the drug from the DMAA/MOEA matrices is linear when plotted against the square root of time, pointing out a Fickian process. On the other hand, AAm/MOEA matrices showed an initial non-Fickian behaviour, probably indicating a comparable rates of Fickian diffusion and polymer relaxation.  相似文献   

17.
Dual thermo‐ and pH‐sensitive network‐grafted hydrogels made of poly(N,N‐dimethylaminoethyl methacrylate) (PDMAEMA) network and poly(N‐isopropylacrylamide) (PNIPAM) grafting chains were successfully synthesized by the combination of atom transfer radical polymerization (ATRP), reversible addition‐fragmentation chain transfer (RAFT) polymerization, and click chemistry. PNIPAM having two azide groups at one chain end [PNIPAM‐(N3)2] was prepared with an azide‐capped ATRP initiator of N,N‐di(β‐azidoethyl) 2‐chloropropionylamide. Alkyne‐pending poly(N,N‐dimethylaminoethyl methacrylate‐co‐propargyl acrylate) [P(DMAEMA‐co‐ProA)] was obtained through RAFT copolymerization using dibenzyltrithiocarbonate as chain transfer agent. The subsequent click reaction led to the formation of the network‐grafted hydrogels. The influences of the chemical composition of P(DMAEMA‐co‐ProA) on the properties of the hydrogels were investigated in terms of morphology and swelling/deswelling kinetics. The dual stimulus‐sensitive hydrogels exhibited fast response, high swelling ratio, and reproducible swelling/deswelling cycles under different temperatures and pH values. The uptake and release of ceftriaxone sodium by these hydrogels showed both thermal and pH dependence, suggesting the feasibility of these hydrogels as thermo‐ and pH‐dependent drug release devices. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

18.
A novel poly(N‐isopropylacrylamide) (PNIPA)/PNIPA interpenetrating polymer network (IPN) was synthesized and characterized. In comparison with conventional PNIPA hydrogels, the shrinking rate of the IPN hydrogel increased when gels, swollen at 20 °C, were immersed in 50 °C water. The phase‐transition temperature of the IPN gel remained unchangeable because of the same chemical constituent in the PNIPA gel. The reswelling kinetics were slower than those of the PNIPA hydrogel because of the higher crosslinking density of the IPN hydrogel. The IPN hydrogel had better mechanical strength because of its higher crosslinking density and polymer volume fraction. The release behavior of 5‐fluorouracil (5‐Fu) from the IPN hydrogel showed that, at a lower temperature, the release of 5‐Fu was controlled by the diffusion of water molecules in the gel network. At a higher temperature, 5‐Fu inside the gel could not diffuse into the medium after a burst release caused by the release of the drug on the surface of the gel. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 1249–1254, 2004  相似文献   

19.
In the present study, three different types of hydrogels i.e., (poly (?acrylamide)/alginate (P (AAm)/Alg), poly (acrylamide-N-isopropylacrylamide) (P (AAm-NIPA)), and poly (acrylamide-N-isopropylacrylamide)/alginate (P (AAm-NIPA)/Alg)) were synthesized by acrylamide, alginate, and N-isopropylacrylamide for the entrapment of laccase. The hydrogel-entrapped and free laccase showed optimum temperature of 50 °C for the oxidation of ABTS, but the entrapped laccase showed high temperature, pH, and storage stability as compared to the free enzyme. The K m values of free laccase, (P (AAm)/Alg)-L, (P (AAm-NIPA))-L, and (P (AAm-NIPA)/Alg)-L were found to be 0.13, 0.28, 0.33, and 0.50 mM, respectively. The V max values of free laccase, (P (AAm)/Alg)-L, (P (AAm-NIPA))-L, and (P (AAm-NIPA)/Alg)-L were found to be 22.22?×?102, 5.55?×?102, 5.0?×?102, and 4.54?×?102 mM/min, respectively. The entrapped laccase hydrogels were used for the decolorization of Reactive Violet 1 dye, with 39 to 45 % decolorization efficiency till the 10th cycle.  相似文献   

20.
In this work we propose a new crosslinking agent and the method to use it for the synthesis of acrylate based hydrogels. The use of this diacrylate of glycerol, synthesized in our laboratory, allows the generation of materials with well defined micro‐structures in the dry state, unique meso‐ and macro‐structures during swelling, and enhanced mechanical properties and swelling capacity in water. These properties depend on the crosslinking agent concentration, as well as synthesis thermal history. Poly(acrylamide‐co‐acrylic acid) hydrogels are commonly crosslinked with N, N′‐methylenebisacrylamide or N‐isopropylacrylamide. Here we obtain and use a new crosslinking agent, obtained from the reaction between glycerol and acrylic acid to produce a Diacrylate of glycerol (DAG). Two synthesis methods at equivalent molar ratio of acrylamide/acrylic acid (AM/AA) were analyzed. The mechanical properties, the swelling capacity, and the morphology at microscale of these hydrogels showed a well defined transition at a critical concentration of crosslinking agent. DAG induces the generation of hydrogels with hierarchichal structure. The micro‐structure surface morphology was investigated by scanning electron microscopy, the meso‐structure by polarized light microscopy and the macro‐structure by CCD imaging. The hydrogels with hierarchical structures showed improved mechanical properties when compared with structureless hydrogels. Control of the microstructure allows the generation of materials for different applications, i.e. templates or smart materials that interact with electromagnetic radiation. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 2667–2679, 2008  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号