首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
The regenerated cellulose (RC)biocomposite films were prepared using casting method where oil palm empty fruit bunch (OPEFB) and microcrystalline cellulose (MCC) were dissolved in N-dimethylacetamide/lithium chloride (DMAc/LiCl)solution. The increasing of OPEFB contents up to 2 wt% increased the tensile strength and modulus of elasticity of RC biocomposite films while the elongation at break decreased. However, at 3 and 4 wt% of OPEFB content, the tensile strength and modulus of elasticity decreased with increases OPEFB content, but elongation at break increased. The increment of tensile strength and modulus of elasticity at 2 wt% is due to the OPEFB fiber that partially dissolved and dispersed with the OPEFB matrix. The morphology studies illustrate that at 2 wt% of OPEFB content of biocomposite films surface consists less voids and agglomerations than at 4 wt%. This can be considered the RC filler was partially dispersed with the RC matrix in the biocomposite films.  相似文献   

3.
The concentration of ethanol produced from lignocellulosic biomass should be at least 40 g l?1 [about 5 % (v/v)] to minimize the cost of distillation process. In this study, the conditions for the simultaneous saccharification and fermentation (SSF) at fed-batch mode for the production of ethanol from alkali-pretreated empty palm fruit bunch fibers (EFB) were investigated. Optimal conditions for the production of ethanol were identified as temperature, 30 °C; enzyme loading, 15 filter paper unit g?1 biomass; and yeast (Saccharomyces cerevisiae) loading, 5 g l?1 of dry cell weight. Under these conditions, an economical ethanol concentration was achieved within 17 h, which further increased up to 62.5 g l?1 after 95 h with 70.6 % of the theoretical yield. To our knowledge, this is the first report to evaluate the economic ethanol production from alkali-pretreated EFB in fed-batch SSF using S. cerevisiae.  相似文献   

4.
Nonionic surfactants have been utilized to improve the enzymatic hydrolysis of lignocellulosic materials. However, the role of surfactant adsorption affecting enzymatic hydrolysis has not been elaborated well. In this work, nonionic surfactants differing in their molecular structures, namely the polyoxyethylene sorbitan monooleate (Tween 80), the secondary alcohol ethoxylate (Tergitol 15-S-9), and the branched alcohol ethoxylate (Tergitol TMN-6), were studied for their effects on the enzymatic hydrolysis of palm fruit bunch (PFB). The PFB was pretreated with a 10% w/v sodium hydroxide solution and then hydrolyzed using the cellulase enzyme from Trichoderma reesei (ATCC 26921) at 50 °C and pH 5. The optimal conditions providing similar yields of reducing sugar required Tween 80 and Tergitol TMN-6 at 0.25% w/v, while Tergitol 15-S-9 was required at 0.1% w/v. All the surfactants improved the enzymatic conversion efficiency and reduced unproductive binding of the enzyme to lignin. In addition, the adsorption isotherm of cellulase was fit well by the Freundlich isotherm, while adsorption of the three nonionic surfactants agreed well with the Langmuir isotherm. Adsorption capacities of the three nonionic surfactants were consistent with their enhancement efficiencies in hydrolysis. The critical micelle concentration was observed as a key property of nonionic surfactant for adsorption capacity.  相似文献   

5.
Cellulase is an enzyme that converts the polymer structure of polysaccharides into fermentable sugars. The high market demand for this enzyme together with the variety of applications in the industry has brought the research on cellulase into focus. In this study, crude cellulase was produced from oil palm empty fruit bunch (OPEFB) pretreated with 2 % NaOH with autoclave, which was composed of 59.7 % cellulose, 21.6 % hemicellulose, and 12.3 % lignin using Trichoderma asperellum UPM1 and Aspergillus fumigatus UPM2. Approximately 0.8 U/ml of FPase, 24.7 U/ml of CMCase and 5.0 U/ml of β-glucosidase were produced by T. asperellum UPM1 at a temperature of 35 °C and at an initial pH of 7.0. A 1.7 U/ml of FPase, 24.2 U/ml of CMCase, and 1.1 U/ml of β-glucosidase were produced by A. fumigatus UPM2 at a temperature of 45 °C and at initial pH of 6.0. The crude cellulase was best produced at 1 % of substrate concentration for both T. asperellum UPM1 and A. fumigatus UPM2. The hydrolysis percentage of pretreated OPEFB using 5 % of crude cellulase concentration from T. asperellum UPM1 and A. fumigatus UPM2 were 3.33 % and 19.11 %, with the reducing sugars concentration of 1.47 and 8.63 g/l, respectively.  相似文献   

6.
Empty fruit bunch (EFB), an underutilized waste product of oil palm processing, was studied as a substrate for the production of humic acids (HA) by a Trichoderma reesei strain by solid-state fermentation (SSF) in Raimbault columns. HA have attracted the attention of many investigators due to their applications in agriculture, industry, the environment, and biomedicine. Commercial HA are currently chemically extracted from peat and coal, which are nonrenewable carbon sources. Biotechnological processes are important for their sustainable and controlled production, with SSF being especially promising for mimicking the natural habitat of fungi. Trichoderma sporulation and HA production are related, and the results of this study showed that SSF stimulated fast sporulation. The productivity related to HA was much higher than that of the biomass, indicating an efficient utilization of EFB. These findings, added to the low cost of EFB, make SSF an attractive process for HA production.  相似文献   

7.

The modified medium composed of the alkaline-pretreated oil palm empty fruit bunch (APEFB) and tuna condensate powder was used for cellulase and xylanase productions by Streptomyces thermocoprophilus strain TC13W. The APEFB contained 74.46% (w/w) cellulose, 15.72% (w/w) hemicellulose, and 6.40% (w/w) lignin. The tuna condensate powder contained 55.49% (w/w) protein and 11.05% (w/w) salt. In the modified medium with only 6.75 g/l tuna condensate powder, 10 g/l APEFB, and 0.5 g/l Tween 80, S. thermocoprophilus strain TC13W produced cellulase 4.9 U/ml and xylanase 9.0 U/ml. The enzyme productions in the modified medium were lower than cellulase (6.0 U/ml) and xylanase (12.0 U/ml) productions in the complex medium (CaCl2 0.1, MgSO4·7H2O 0.1, KH2PO4 0.5, K2HPO4 1.0, NaCl 0.2, yeast extract 5.0, NH4NO3 1.0, Tween 80 0.5). When tuna condensate powder in the modified medium was reduced to 5.0 g/l and Tween 80 was increased to 1.5 g/l, S. thermocoprophilus strain TC13W produced cellulase and xylanase activities of 9.1 and 12.1 U/ml, respectively. This study shows that the cost of enzyme production could be reduced by using pretreated EFB and tuna condensate as a carbon and a nitrogen source, respectively.

  相似文献   

8.
Empty fruit bunch (EFB), a residual product of the palm plantation, is an attractive biomass for biorefinery. As xylan is susceptible to high temperature pretreatment, it is important to setup a proper pretreatment condition to maximize the sugar recovery from EFB. Kinetic parameters of mathematical models were obtained in order to predict the concentration of xylose, glucose, furfural, and acetic acid in the hydrolysate and to find production conditions of xylose. We investigated the kinetics of hot liquid water and dilute sulfuric acid hydrolysis over a 40-min period using a self-designed setup by measuring the concentrations of released sugars (xylose, glucose) and degradation products (acetic acid and furfural). The reaction was performed within the range 160~180 °C, under reaction conditions of various concentration of sulfuric acid (0.1~0.2%) and 1:7 solid-liquid ratio in a batch reactor. The kinetic constants can be expressed by the Arrhenius equation with the activation energy for the hydrolysis of sugar and decomposition of sugar. The activation energy of xylose was determined to be 136.2187 kJ mol(-1).  相似文献   

9.
Empty palm fruit bunch fiber (EPFBF), a readily available cellulosic biomass from palm processing facilities, is investigated as a potential carbohydrate source for cellulosic ethanol production. This feedstock was pretreated using ammonia fiber expansion (AFEX) and enzymatically hydrolyzed. The best tested AFEX conditions were at 135 °C, 45 min retention time, water to dry biomass loading of 1:1 (weight ratio), and ammonia to dry biomass loading of 1:1 (weight ratio). The particle size of the pretreated biomass was reduced post-AFEX. The optimized enzyme formulation consists of Accellerase (84 μL/g biomass), Multifect Xylanase (31 μL/g biomass), and Multifect Pectinase (24 μL/g biomass). This mixture achieved close to 90% of the total maximum yield within 72 h of enzymatic hydrolysis. Fermentation on the water extract of this biomass affirms that nutrients solely from the pretreated EPFBF can support yeast growth for complete glucose fermentation. These results suggest that AFEX-treated EPFBF can be used for cellulosic biofuels production because biomass recalcitrance has been overcome without reducing the fermentability of the pretreated materials.  相似文献   

10.
Xylitol production by bioconversion of xylose can be economically interesting if the raw material can be recovered from a cheap lignocellulosic biomass (LCB). Meranti wood sawdust (MWS) is a renewable and low-cost LCB that can be used as a promising and economic source of xylose, a starting raw material for the manufacture of several specialty chemicals, especially xylitol. This study aimed to optimize the hydrolysis process of MWS and to determine the influence of temperature, H2SO4 concentration, and residence time on xylose release and on by-product formation (glucose, arabinose, acetic acid, furfural, hydroxymethylfurfural (HMF), and lignin degradation products (LDPs)). Batch hydrolysis was conducted under various operating conditions, and response surface methodology was adopted to achieve the highest xylose yield. Xylose production was highly affected by temperature, acid concentration, and residence time. The optimum temperature, acid concentration, and time were determined to be 124 °C, 3.26 %, and 80 min, respectively. Under these optimum conditions, xylose yield and selectivity were attained at 90.6 % and 4.05 g/g, respectively.  相似文献   

11.
Xylose effective utilization is crucial for production of bulk chemicals from low-cost lignocellulosic substrates. In this study, an efficient l-lactate production process from xylose by a mutant Bacillus coagulans NL-CC-17 was demonstrated. The nutritional requirements for l-lactate production by B. coagulans NL-CC-17 were optimized statistically in shake flask fermentations. Corn steep liquor powder and yeast exact were identified as the most significant factors by the two-level Plackett–Burman design. Steepest ascent experiments were applied to approach the optimal region of the two factors, and a central composite design was employed to determine their optimal levels. The optimal medium was used to perform batch fermentation in a 3-l bioreactor. A maximum of 90.29 g l?1? l-lactic acid was obtained from 100 g l?1 xylose in 120 h. When using corn stove prehydrolysates as substrates, 23.49 g l?1? l-lactic acid was obtained in 36 h and the yield was 83.09 %.  相似文献   

12.
The effect of cultivation condition of two locally isolated ascomycetes strains namely Trichoderma asperellum UPM1 and Aspergillus fumigatus UPM2 were compared in submerged and solid state fermentation. Physical evaluation on water absorption index, solubility index and chemical properties of lignin, hemicellulose and cellulose content as well as the cellulose structure on crystallinity and amorphous region of treated oil palm empty fruit bunch (OPEFB) (resulted in partial removal of lignin), sago pith residues (SPR) and oil palm decanter cake towards cellulases production were determined. Submerged fermentation shows significant cellulases production for both strains in all types of substrates. Crystallinity of cellulose and its chemical composition mainly holocellulose components was found to significantly affect the total cellulase synthesis in submerged fermentation as the higher crystallinity index, and holocellulose composition will increase cellulase production. Treated OPEFB apparently induced the total cellulases from T. asperellum UPM1 and A. fumigatus UPM2 with 0.66 U/mg FPase, 53.79 U/mg CMCase, 0.92 U/mg β-glucosidase and 0.67 U/mg FPase, 47.56 U/mg and 0.14 U/mg β-glucosidase, respectively. Physical properties of water absorption and solubility for OPEFB and SPR also had shown significant correlation on the cellulases production.  相似文献   

13.
The present work reports the biobleaching effect on OPEFB pulp upon utilisation of extracellular xylano-pectinolytic enzymes simultaneously yielded from Bacillus amyloliquefaciens ADI2. The impacts of different doses, retention times, pH, and temperatures required for the pulp biobleaching process were delineated accordingly. Here, the OPEFB pulp was subjected to pre-treatment with xylano-pectinolytic enzymes generated from the same alkalo-thermotolerant isolate that yielded those of higher quality. Remarkable enhanced outcomes were observed across varying pulp attributes: for example, enzyme-treated pulp treated to chemical bleaching sequence generated improved brightness of 11.25%. This resulted in 11.25% of less chlorine or chemical consumption required for obtaining pulp with optical attributes identical to those generated via typical chemical bleaching processes. Ultimately, the reduced consumption of chlorine would minimise the organochlorine compounds found in an effluent, resulting in a lowered environmental effect of paper-making processes overall as a consequence. This will undoubtedly facilitate such environmentally-friendly technology incorporation in the paper pulp industry of today.  相似文献   

14.
Biopolymer active packaging is known to have low mechanical strength and highly brittle. Regardless to its disadvantage, polymers from natural sources have attracted serious attention since the non-renewable sources for example petroleum, the major precursor of plastic manufacturing become depleted. Starch-Chitosan for instance is a hybrid film that entirely green as it produced from a renewable material and totally degradable. The addition of chitosan in film packaging able to kill pathogen hence increases the food shelf life. Through nanotechnology advance, nanomaterial can be used for material reinforcement. Nowadays, greener approach could be applied by incorporating natural cellulose nanofiber into the film matrix. Oil palm empty fruit bunch (OPEFB) fiber that rich of cellulose contents could be treated chemically to purify the cellulose in the fiber. Cellulose fiber obtained was cut to a nano-size using acid hydrolysis. Transmission Electron Microscopy (T.E.M) obtained shown the nanofiber size was ranged between 1-100 nm in diameter. Nanocomposite film formulation, was constructed by varying the cellulose nanofiber incorporation between 2-10% per weight of starch. The strength of the films was measured as well as antimicrobial properties. The addition of 2% cellulose nanofiber into the film matrix exhibits high tensile strength with 5.25 Mpa compared to starch-chitosan hybrid film with 3.96 Mpa. However, no significant improvement in tensile strength was distinguished beyond that ratio. Antimicrobial analysis shows that the addition of cellulose nanofiber could increase the inhibition effect towards gram-positive bacteria but not towards gram-negative bacteria. The addition of 2% cellulose nanofiber increased the inhibition diameter towards gram positive bacteria, Bacillus subtilis up to 33%. However, inhibition towards Bacillus subtilis decreased with the incorporation of more cellulose nanofiber. In gram-negative bacteria Escherichia coli, the addition of cellulose nanofiber does not give significant effect to bacterial. In General, the addition of the unique structure of cellulose nanofiber in the starch based polymer system could enhance the mechanical strength of the film and increase the inhibition of the gram positive bacteria.  相似文献   

15.
This work reports the experimental data and kinetic modeling of diacylglycerol (DAG) production from palm oil using a commercial immobilized lipase (Lipozyme RM IM) in a solvent-free medium. The experiments were performed in batch mode, at 55?°C and 400?rpm, and the effects of enzyme concentration (0.68?C2.04?wt% related to the mass of substrates), initial water concentration (5?C15?wt% related to the mass of oil), and reaction time were evaluated. A novel kinetic model is presented based on the ordered-sequential bi?Cbi mechanism considering hydrolysis and esterification steps, in which a correlation between water-in-oil solubility and surfactant molecules concentration in the oil allowed the model to describe the induction period in the beginning of the hydrolysis reaction. Moreover, mass transfer limitations related to the enzyme concentration in the system were also taken into account. The proposed model presented a very satisfactory agreement with the experimental data, thus allowing a better understanding of the reaction kinetics. The best conditions obtained for the product (partially hydrolyzed palm oil) in terms of DAG yield (35.91?wt%) were 2.87?wt% enzyme/substrate, 2.10?wt% water/oil, and 72?h of reaction.  相似文献   

16.
Different measurements were conducted to study the mechanisms of enhanced oil recovery (EOR) by surfactant-induced wettability alteration. The adhesion work could be reduced by the surfactant-induced wettability alteration from oil-wet conditions to water-wet conditions. Surfactant-induced wettability alteration has a great effect on the relative permeabilities of oil and water. The relative permeability of the oil phase increases with the increase of the water-wetness of the solid surface. Seepage laws of oil and water are greatly affected by surfactant-induced wettability alteration. Water flows forward along the pore wall in the water-wet rocks and moves forward along the center of the pores in the oil-wet rocks during the surfactant flooding. For the intermediate-wet system, water uniformly moves forward and the contact angle between the oil–water interface and the pore surface is close to 90°. The direction of capillary force is consistent with the direction of water flooding for the water-wet surface. While for the oil-wet surface, the capillary force direction is opposite to the water-flooding direction. The highest oil recovery by water flooding is obtained at close to neutral wetting conditions and the minimal oil recovery occurs under oil-wet conditions.  相似文献   

17.
Cotton stalk, a lignocellulosic waste material, is composed of xylose that can be used as a raw material for production of xylitol, a high-value product. There is a growing interest in the use of lignocellulosic wastes for conversion into various chemicals because of their low cost and the fact that they are renewable and abundant. The objective of the study was to determine the effects of H2SO4 concentration, temperature, and reaction time on the production of sugars (xylose, glucose, and arabinose) and on the reaction by-products (furfural and acetic acid). Response surface methodology was used to optimize the hydrolysis process in order to obtain high xylose yield and selectivity. The optimum reaction temperature, reaction time, and acid concentration were 140 °C, 15 min, and 6%, respectively. Under these conditions, xylose yield and selectivity were found to be 47.88% and 2.26 g g−1, respectively.  相似文献   

18.
Oil palm biomass, namely empty fruit bunch and frond fiber, were pretreated using a planetary ball mill. Particle sizes and crystallinity index values of the oil palm biomass were significantly reduced with extended ball mill processing time. The treatment efficiency was evaluated by the generation of glucose, xylose, and total sugar conversion yields from the pretreatment process compared to the amount of sugars from raw materials. Glucose and xylose contents were determined using high-performance liquid chromatography. An increasing trend in glucose and xylose yield as well as total sugar conversion yield was observed with decreasing particle size and crystallinity index. Oil palm frond fiber exhibited the best material yields using ball milling pretreatment with generated glucose, xylose, and total sugar conversion yields of 87.0, 81.6, and 85.4 %, respectively. In contrast, oil palm empty fruit bunch afforded glucose and xylose of 70.0 and 82.3 %, respectively. The results obtained in this study showed that ball mill-treated oil palm biomass is a suitable pretreatment method for high conversion of glucose and xylose.  相似文献   

19.
Recently enhance oil recovery (EOR) technology is getting more attention by many countries since energy crises are getting worse and frightened. One of the reasons for this is due to the shortage of current oil resources and difficulties in finding a new oil field. Indonesia is one of the examples, before 2004 Indonesia is a net oil exporting country but after that Indonesia is a net oil importing country. The oil demand in the country is increasing while the oil production capacity is decreasing. In fact, when a new oil reservoir is drilled, the oil amount obtained from it is about 20-40% of the potential and hence there is still 60-80% oil left in the reservoir. Application of EOR technology gives an additional chance to get out more oil from the reservoir, possibly about another 20%. Polymer is the material that plays an important role in the application of EOR technology, especially surfactant and hydrogel polymers. In the technology, surfactant polymer is injected to the reservoir to reduce an interfacial tension between oil and water and is able to wipe out the trapped oil from the reservoir rock and hence increase the oil production. While an injection of hydrogel polymer to the reservoir is to increase a viscosity of fluid containing water so that the fluid is more difficult to flow than the oil, and as a result, the oil production increases. The most common polymer used for this application is polyacrylamide group.  相似文献   

20.
Cocoa butter equivalent was prepared by enzymatic acidolysis reaction of substrate consisting of refined palm olein oil and palmitic?Cstearic fatty acid mixture. The reactions were performed in a batch reactor at a temperature of 60?°C in an orbital shaker operated at 160?RPM. Different mass ratios of substrates were explored and the compositions of the five major triacylglycerol (TAG) of the structured lipids were identified and quantified using cocoa butter-certified reference material IRMM-801. The reaction resulted in production of cococa butter equivent with TAG compostion (POP 26.6 %, POS 42.1, POO 7.5, SOS 18.0 %, and SOO 5.8 %) and melting temperature between 34.7 and 39.6?°C which is close to that of the cocoa butter. The result of this research demonstrated the potential use of saturated fatty acid distillate (palmitic and stearic fatty acids) obtained from palm oil physical refining process into a value-added product.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号