首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Growing data suggest that Aspergillus niger, an endophytic fungus, is a rich source of natural compounds with a wide range of biological properties. This study aimed to examine the antimicrobial and antibiofilm capabilities of the Phragmites australis-derived endophyte against a set of pathogenic bacteria and fungi. The endophytic fungus Aspergillus sp. AP5 was isolated from the leaves of P. australis. The chemical profile of the fungal crude extract was identified by spectroscopic analysis using LC-HRESIMS. The fungal-derived extract was evaluated for its antimicrobial activity towards a set of pathogenic bacterial and fungal strains including Staphylococcus aureus, Pseudomonas aeruginosa, Proteus vulgaris, Klebsiella sp., Candida albicans, and Aspergillus niger. Moreover, antibiofilm activity toward four resistant biofilm-forming bacteria was also evaluated. Additionally, a neural-networking pharmacophore-based visual screening predicted the most probable bioactive compounds in the obtained extract. The AP5-EtOAc extract was found to have potent antibacterial activities against S. aureus, E. coli, and Klebsiella sp., while it exhibited low antibacterial activity toward P. Vulgaris and P. aeruginosa and displayed anticandidal activity. The AP5-EtOAc extract had significant antibiofilm activity in S. aureus, followed by P. aeruginosa. The active metabolites’ antifungal and/or antibacterial activities may be due to targeting the fungal CYP 51 and/or the bacterial Gyr-B.  相似文献   

2.
Agents capable of eradicating bacterial biofilms are of great importance to human health as biofilm‐associated infections are tolerant to our current antibiotic therapies. We have recently discovered that halogenated quinoline (HQ) small molecules are: 1) capable of eradicating methicillin‐resistant Staphylococcus aureus (MRSA), methicillin‐resistant Staphylococcus epidermidis (MRSE) and vancomycin‐resistant Enterococcus faecium (VRE) biofilms, and 2) synthetic tuning of the 2‐position of the HQ scaffold has a significant impact on antibacterial and antibiofilm activities. Here, we report the chemical synthesis and biological evaluation of 39 HQ analogues that have a high degree of structural diversity at the 2‐position. We identified diverse analogues that are alkylated and aminated at the 2‐position of the HQ scaffold and demonstrate potent antibacterial (MIC≤0.39 μm ) and biofilm eradication (MBEC 1.0–93.8 μm ) activities against drug‐resistant Staphylococcus aureus, Staphylococcus epidermidis and Enterococcus faecium strains while demonstrating <5 % haemolysis activity against human red blood cells (RBCs) at 200 μm . In addition, these HQs demonstrated low cytotoxicity against HeLa cells. Halogenated quinolines are a promising class of antibiofilm agents against Gram‐positive pathogens that could lead to useful treatments against persistent bacterial infections.  相似文献   

3.
The search for new antibacterial agents has become urgent due to the exponential growth of bacterial resistance to antibiotics. Nitrogen-containing heterocycles such as 1,8-naphthyridine derivatives have been shown to have excellent antimicrobial properties. Therefore, the purpose of this study was to evaluate the antibacterial and antibiotic-modulating activities of 1,8-naphthyridine derivatives against multi-resistant bacterial strains. The broth microdilution method was used to determine the minimum inhibitory concentration (MIC) of the following compounds: 7-acetamido-1,8-naphthyridin-4(1H)-one and 3-trifluoromethyl-N-(5-chloro-1,8-naphthyridin-2-yl)-benzenesulfonamide. The antibiotic-modulating activity was analyzed using subinhibitory concentrations (MIC/8) of these compounds in combination with norfloxacin, ofloxacin, and lomefloxacin. Multi-resistant strains of Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus were used in both tests. Although the compounds had no direct antibacterial activity (MIC ≥ 1.024 µg/mL), they could decrease the MIC of these fluoroquinolones, indicating synergism was obtained from the association of the compounds. These results suggest the existence of a structure–activity relationship in this group of compounds with regard to the modulation of antibiotic activity. Therefore, we conclude that 1,8-naphthyridine derivatives potentiate the activity of fluoroquinolone antibiotics against multi-resistant bacterial strains, and thereby interesting candidates for the development of drugs against bacterial infections caused by multidrug resistant strains.  相似文献   

4.
Novel antibiotic treatments are in increasing demand to tackle life-threatening infections from bacterial pathogens. In this study, we report the use of a potent battacin lipopeptide as an antimicrobial gel to inhibit planktonic and mature biofilms of S. aureus and P. aeruginosa. The antimicrobial gels were made by covalently linking the N-terminal cysteine containing lipopeptide (GZ3.163) onto the polyethylene glycol polymer matrix and initiating gelation using thiol-ene click chemistry. The gels were prepared both in methanol and in water and were characterised using rheology, Fourier transform infrared (FT-IR) spectroscopy and scanning electron microscopy (SEM). Antibacterial and antibiofilm analyses revealed that the gels prepared in methanol have better antibacterial and antibiofilm activity. Additionally, a minimum peptide content of 0.5 wt% (relative to polymer content) is required to successfully inhibit the planktonic bacterial growth and disperse mature biofilms of P. aeruginosa and S. aureus. The antibacterial activity of these lipopeptide gels is mediated by a contact kill mechanism of action. The gels are non-haemolytic against mouse red blood cells and are non-cytotoxic against human dermal fibroblasts. Findings from this study show that battacin lipopeptide gels have the potential to be developed as novel topical antibacterial agents to combat skin infections, particularly caused by S. aureus.  相似文献   

5.
The increase in antibiotic resistance and the emergence of new bacterial infections have intensified the research for natural products from plants with associated therapy. This study aimed to verify the antibacterial and antioxidant activity of crude extracts of the genus Plectranthus species, being the first report on the modulation of aminoglycosides antibiotic activity by Plectranthus amboinicus extracts. The chemical composition was obtained by chemical prospecting and High-Performance Liquid Chromatography with diode arrangement detector (HPLC/DAD). The antibacterial activities of the extracts alone or in association with aminoglycosides were analyzed using the microdilution test. The antioxidant activity was evaluated by 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical scavenging. The phytochemical prospection allowed the flavonoids, saponins, tannins and triterpenoids to be identified. Quercetin, rutin, gallic acid, chlorogenic acid, caffeic acid, catechin, kaempferol, glycosylated kaempferol, quercitrin, and isoquercitrin were identified and quantified. The principal component analysis (PCA) observed the influence of flavonoids and phenolic acids from Plectranthus species on studied activities. Phytochemical tests with the extracts indicated, especially, the presence of flavonoids, confirmed by quantitative analysis by HPLC. The results revealed antibacterial activities, and synergistic effects combined with aminoglycosides, as well as antioxidant potential, especially for P. ornatus species, with IC50 of 32.21 µg/mL. Multivariate analyzes show that the inclusion of data from the antioxidant and antibacterial activity suggests that the antioxidant effect of these species presents a significant contribution to the synergistic effect of phytoconstituents, especially based on the flavonoid contents. The results of this study suggest the antibacterial activity of Plectranthus extracts, as well as their potential in modifying the resistance of the analyzed aminoglycosides.  相似文献   

6.
The chemical composition and antibacterial activity of Peucedanum officinale L. (Apiaceae) essential oil were examined, as well as the association between it and antibiotics: tetracycline, streptomycin and chloramphenicol. The interactions of the essential oil with antibiotics were evaluated using the microdilution checkerboard assay. Monoterpene hydrocarbons, with α-phellandrene as the dominant constituent, were the most abundant compound class of the essential oil of P. officinale. The researched essential oil exhibited slight antibacterial activity against the tested bacterial strains in vitro. On the contrary, essential oil of P. officinale possesses a great synergistic potential with chloramphenicol and tetracycline. Their combinations reduced the minimum effective dose of the antibiotic and, consequently, minimised its adverse side effects. In addition, investigated interactions are especially successful against Gram-negative bacteria, the pharmacological treatment of which is very difficult nowadays.  相似文献   

7.
Currently, the pharmaceutical industry is well-developed, and a large number of chemotherapeutics are being produced. These include antibacterial substances, which can be used in treating humans and animals suffering from bacterial infections, and as animal growth promoters in the agricultural industry. As a result of the excessive use of antibiotics and emerging resistance amongst bacteria, new antimicrobial drugs are needed. Due to the increasing trend of using natural, ecological, and safe products, there is a special need for novel phytocompounds. The compounds analysed in the present study include two triterpenoids ursolic acid (UA) and oleanolic acid (OA) and the flavonoid dihydromyricetin (DHM). All the compounds displayed antimicrobial activity against Gram-positive (Staphylococcus aureus ATCC 6538, Staphylococcus epidermidis ATCC 12228, and Listeria monocytogenes ATCC 19115) and Gram-negative bacteria (Escherichia coli ATCC 25922, Proteus hauseri ATCC 15442, and Campylobacter jejuni ATCC 33560) without adverse effects on eukaryotic cells. Both the triterpenoids showed the best antibacterial potential against the Gram-positive strains. They showed synergistic activity against all the tested microorganisms, and a bactericidal effect with the combination OA with UA against both Staphylococcus strains. In addition, the synergistic action of DHM, UA, and OA was reported for the first time in this study. Our results also showed that combination with triterpenoids enhanced the antimicrobial potential of DHM.  相似文献   

8.
The presence of bacteria, existing as highly organized biofilm communities, in chronic non-healing wounds has been identified as a significant impediment for wound healing. Nanozymes, with unique antimicrobial mechanisms, as a new alternative for antibiotics, have the potential to synergize with nitric oxide (NO) with enhanced antibacterial and antibiofilm ability. However, the always-on state of nanozymes and the reactivity of NO limit their clinical applications. In this context, an intelligent and multifunctional Pd-MOF@PAzo@SNP nanoplatform was fabricated using UiO-66 as a palladium (Pd) nanozyme-loading vehicle, then a surface modification with photosensitive polyazobenzene (PAzo), and the adsorption of the NO donor sodium nitroprusside (SNP) via a host-guest interaction between β-cyclodextrin-modified hyaluronic acid (β-CD-HA) and azobenzene. The activity of Pd-nanozyme was easily controlled via ultraviolet (UV) light, and its photosensitivity was regulated by changing the side-chain unit length of PAzo. Furthermore, NO was released in response to the UV irradiation and played a synergistic role with the peroxidase activity of Pd nanozyme, exhibiting excellent antibacterial and antibiofilm activity in the presence of 0.01 mM hydrogen peroxide (H2O2). In vivo, Pd-MOF@PAzo@SNP accelerated the healing of a biofilm-infected diabetic wound by dispersing the biofilm, reducing bacterial burden, and promoting angiogenesis and collagen deposition. Overall, the nanoplatform provides a reliable and highly efficient strategy to develop an intelligent nanozyme synergy with NO therapy in chronic wound management.  相似文献   

9.
Intrinsic hydrophobicity is the reason for efficient bacterial settlement and biofilm growth on silicone materials. Those unwelcomed phenomena may play an important role in pathogen transmission. We have proposed an approach towards the development of new anti-biofilm strategies that resulted in novel antimicrobial hydrophobic silicones. Those functionalized polysiloxanes grafted with side 2-(carboxymethylthioethyl)-, 2-(n-propylamidomethylthioethyl)- and 2-(mercaptoethylamidomethylthioethyl)- groups showed a wide range of antimicrobial properties towards selected strains of bacteria (reference strains Staphylococcus aureus, Escherichia coli and water-borne isolates Agrobacterium tumefaciens, Aeromonas hydrophila), fungi (Aureobasidium pullulans) and algae (Chlorella vulgaris), which makes them valuable antibacterial and antibiofilm agents. Tested microorganisms showed various levels of biofilm formation, but particularly effective antibiofilm activity was demonstrated for bacterial isolate A. hydrophila with high adhesion abilities. In the case of modified surfaces, the relative coefficient of adhesion for this strain was 18 times lower in comparison to the control glass sample.  相似文献   

10.
The emergence of multi‐drug resistant (MDR) bacteria and dynamic pattern of infectious diseases demand to develop alternative and more effective therapeutic strategies. Silver nanoparticles (AgNPs) are among the most widely commercialized engineered nanomaterials, because of their unique properties and increasing use for various applications in nanomedicine. This study for the first time aimed to evaluate the antibacterial and antibiofilm activities of newly synthesized nanochelating based AgNPs against several Gram‐positive and ‐negative nosocomial pathogens. Nanochelating technology was used to design and synthesize the AgNPs. The cytotoxicity was tested in human cell line using the MTT assay. AgNPs minimal inhibitory concentration (MIC) was determined by standard broth microdilution. Antibiofilm activity was assayed by a microtiter‐plate screening method. The two synthesized AgNPs including AgNPs (A) with the size of about 20‐25 nm, and AgNPs (B) with 30‐35 nm were tested against Staphylococcus aureus, Staphylococcus epidermidis, Acinetobacter baumannii, and Pseudomonas aeruginosa. AgNPs exhibited higher antibacterial activity against Gram‐positive strains. AgNPs were found to significantly inhibit the biofilm formation of tested strains in concentration 0.01 to 10 mg/mL. AgNPs (A) showed significant effective antibiofilm activity compared to AgNPs (B). In summary, our results showed the promising antibacterial and antibiofilm activity of our new nanochelating based synthesized AgNPs against several nosocomial pathogens.  相似文献   

11.
Antibiotic resistance is considered a major health concern globally. It is a fact that the clinical need for new antibiotics was not achieved until now. One of the most commonly prescribed classes of antibiotics is β-Lactam antibiotics. However, most bacteria have developed resistance against β-Lactams by producing enzymes β-Lactamase or penicillinase. The discovery of new β-Lactamase inhibitors as new antibiotics or antibiotic adjuvants is essential to avoid future catastrophic pandemics. In this study, five dihydroisocoumarin: 6-methoxy mellein (1); 5,6-dihydroxymellein (2); 6-hydroxymellein (3); 4-chloro-6-hydroxymellein (4) and 4-chloro-5,6-di-hydroxymellein (5) were isolated from Wadi Lajab sediment-derived fungus Penicillium chrysogenum, located 15 km northwest of Jazan, KSA. The elucidation of the chemical structures of the isolated compounds was performed by analysis of their NMR, MS. Compounds 1–5 were tested for antibacterial activities against Gram-positive and Gram-negative bacteria. All of the compounds exhibited selective antibacterial activity against Gram-positive bacteria Staphylococcus aureus and Bacillus licheniformis except compound 3. The chloro-dihydroisocoumarin derivative, compound 4, showed potential antimicrobial activities against all of the tested strains with the MIC value between 0.8–5.3 μg/mL followed by compound 5, which exhibited a moderate inhibitory effect. Molecular docking data showed good affinity with the isolated compounds to β-Lactamase enzymes of bacteria; NDM-1, CTX-M, OXA-48. This work provides an effective strategy for compounds to inhibit bacterial growth or overcome bacterial resistance.  相似文献   

12.
Microorganisms are able to give rise to biofilm formation on food matrixes and along food industry infrastructures or medical equipment. This growth may be reduced by the application of molecules preventing bacterial adhesion on these surfaces. A new Schiff base ligand, derivative of hesperetin, HABH (2-amino-N′-(2,3-dihydro-5,7-dihydroxy-2-(3-hydroxy-4-methoxyphenyl)chromen-4-ylidene)benzohydrazide), and its copper complex, CuHABH [CuLH2(OAc)], were designed, synthesized and analyzed in terms of their structure and physicochemical properties, and tested as antibacterial agents. Their structures both in a solid state and in solution were established using several methods: FT-IR, 1H NMR, 13C NMR, UV-Vis, FAB MS, EPR, ESI-MS and potentiometry. Coordination binding of the copper(II) complex dominating at the physiological pH region in the solution was found to be the same as that detected in the solid state. Furthermore, the interaction between the HABH and CuHABH with calf-thymus DNA (CT-DNA) were investigated. These interactions were tracked by UV-Vis, CD (circular dichroism) and spectrofluorimetry. The results indicate a stronger interaction of the CuHABH with the CT-DNA than the HABH. It can be assumed that the nature of the interactions is of the intercalating type, but in the high concentration range, the complex can bind to the DNA externally to phosphate residues or to a minor/major groove. The prepared compounds possess antibacterial and antibiofilm activities against Gram-positive and Gram-negative bacteria. Their antagonistic activity depends on the factor-strain test system. The glass was selected as a model surface for the experiments on antibiofilm activity. The adhesion of bacterial cells to the glass surface in the presence of the compounds was traced by luminometry and the best antiadhesive action against both bacterial strains was detected for the CuHABH complex. This molecule may play a crucial role in disrupting exopolymers (DNA/proteins) in biofilm formation and can be used to prevent bacterial adhesion especially on glass equipment.  相似文献   

13.
The improper use of antibiotics has led to the development of bacterial resistance, resulting in fewer antibiotics for many bacterial infections. Especially, the drug resistance of hospital-acquired methicillin-resistant Staphylococcus aureus (HA-MRSA) is distinctly serious. This research designed and synthesized two series of 3-substituted ocotillol derivatives in order to improve their anti-HA-MRSA potency and synergistic antibacterial activity. Among the synthesized compounds, 20–31 showed minimum inhibitory concentration (MIC) values of 1–64 µg/mL in vitro against HA-MRSA 18–19, 18–20, and S. aureus ATCC29213. Compound 21 showed the best antibacterial activity, with an MIC of 1 μg/mL and had synergistic inhibitory effects. The fractional inhibitory concentration index (FICI) value was 0.375, when combined with chloramphenicol (CHL) or kanamycin (KAN). The structure–activity relationships (SARs) of ocotillol-type derivatives were also summarized. Compound 21 has the potential to be developed as a novel antibacterial agent or potentiator against HA-MRSA.  相似文献   

14.
This study investigates the modification of commercial cellulose acetate microfiltration membranes by supercritical solvent impregnation with thymol to provide them with antibacterial properties. The impregnation process was conducted in a batch mode, and the effect of pressure and processing time on thymol loading was followed. The impact of the modification on the membrane’s microstructure was analyzed using scanning electron and ion-beam microscopy, and membranes’ functionality was tested in a cross-flow filtration system. The antibiofilm properties of the obtained materials were studied against Staphyloccocus aureus and Pseudomonas aeruginosa, while membranes’ blocking in contact with bacteria was examined for S. aureus and Escherichia coli. The results revealed a fast impregnation process with high thymol loadings achievable after just 0.5 h at 15 MPa and 20 MPa. The presence of 20% of thymol provided strong antibiofilm properties against the tested strains without affecting the membrane’s functionality. The study showed that these strong antibacterial properties could be implemented to the commercial membranes’ defined polymeric structure in a short and environmentally friendly process.  相似文献   

15.
A new series of macrocyclic complexes, [M(C48H32N4)X2], where M?=?Co(II),?Ni(II),?Cu(II), and Zn(II); X?=?Cl?,?NO3 ?,?CH3COO?, have been synthesized by condensation of 1,8-diaminonaphthalene and benzil, in the presence of divalent metal salts in methanolic medium. The complexes have been characterized by elemental analyses, conductance measurements, magnetic measurements, and electronic, NMR, IR, and MS spectral studies. The low value of molar conductance indicates the presence of non-electrolytes. A distorted octahedral geometry is proposed for the complexes. The metal complexes were also tested for their in vitro antibacterial activities against some bacterial strains and compared with the standard antibiotic Ciprofloxacin. Some tested complexes show good antibacterial activities against some bacterial strains.  相似文献   

16.
Honey exhibits antibacterial and antioxidant activities that are ascribed to its diverse secondary metabolites. In the Philippines, the antibacterial and antioxidant activities, as well as the bioactive metabolite contents of the honey, have not been thoroughly described. In this report, we investigated the in vitro antibacterial and antioxidant activities of honey from Apis mellifera and Tetragonula biroi, identified the compound responsible for the antibacterial activity, and compared the observed bioactivities and metabolite profiles to that of Manuka honey, which is recognized for its antibacterial and antioxidant properties. The secondary metabolite contents of honey were extracted using a nonionic polymeric resin followed by antibacterial and antioxidant assays, and then spectroscopic analyses of the phenolic and flavonoid contents. Results showed that honey extracts produced by T. biroi exhibits antibiotic activity against Staphylococcal pathogens as well as high antioxidant activity, which are correlated to its high flavonoid and phenolic content as compared to honey produced by A. mellifera. The bioassay-guided fractionation paired with Liquid Chromatography Mass Spectrometry (LCMS) and tandem MS analyses found the presence of the flavonoid isorhamnetin (3-methylquercetin) in T. biroi honey extract, which was demonstrated as one of the compounds with inhibitory activity against multidrug-resistant Staphylococcus aureus ATCC BAA-44. Our findings suggest that Philippine honey produced by T. biroi is a potential nutraceutical that possesses antibiotic and antioxidant activities.  相似文献   

17.
A series of the macrocyclic complexes is synthesized by condensation of acetonylacetone and thiocarbohydrazide in the presence of divalent metal salts in the methanolic medium. The complexes are of the type: [M(TML)X2] where, M = Co(II), Ni(II), Cu(II), Zn(II) and Cd(II); X = Cl CH3COO and TML is a tetradentate macrocyclic ligand. The complexes have been characterized with the help of various physicochemical techniques like elemental analyses, conductance measurements, magnetic measurements, NMR, infrared and electronic spectral studies. The low value of molar conductance indicates them to be non-electrolyte. On the basis of various studies a distorted octahedral geometry may be proposed for all the complexes. All the synthesized metal complexes were also tested for their in vitro antibacterial activities against some bacterial strains. The results obtained were compared with standard antibiotic: Ciprofloxacin. Some of the tested complexes shows good antibacterial activities against some bacterial strains.  相似文献   

18.
Despite progress achieved, there is limited available information about the antibacterial activity of constituents of essential oils (EOs) from different medicinal-aromatic plants (MAPs) against fish pathogens and the complex interactions of blended EOs thereof. The present study aimed to investigate possible synergistic antimicrobial effects of EOs from seven Greek MAPs with strong potential against Aeromonas veronii bv. sobria, a fish pathogen associated with aquaculture disease outbreaks. The main objective was to evaluate whether blending of these EOs can lead to increased antimicrobial activity against the specific microorganism. A total of 127 combinations of EOs were prepared and their effect on A. veronii bv. sobria growth was tested in vitro. We examined both the inhibitory and bactericidal activities of the individual EOs and compared them to those of the blended EOs. The vast majority of the investigated combinations exhibited significant synergistic and additive effects, while antagonistic effects were evident only in a few cases, such as the mixtures containing EOs from rosemary, lemon balm and pennyroyal. The combination of EOs from Greek oregano and wild carrot, as well as the combinations of those two with Spanish oregano or savoury were the most promising ones. Overall, Greek oregano, savoury and Spanish oregano EOs were the most effective ones when applied either in pure form or blended with other EOs.  相似文献   

19.
Polymyxin-based combination therapy is commonly used to treat carbapenem-resistant Acinetobacter baumannii (CRAB) infections. In the present study, the bactericidal effect of polymyxin B and minocycline combination was tested in three CRAB strains containing blaOXA-23 by the checkerboard assay and in vitro dynamic pharmacokinetics/pharmacodynamics (PK/PD) model. The combination showed synergistic or partial synergistic effect (fractional inhibitory concentration index ≤0.56) on the tested strains in checkboard assays. The antibacterial activity was enhanced in the combination group compared with either monotherapy in in vitro PK/PD model. The combination regimen (simultaneous infusion of 0.75 mg/kg polymyxin B and 100 mg minocycline via 2 h infusion) reduced bacterial colony counts by 0.9–3.5 log10 colony forming units per milliliter (CFU/mL) compared with either drug alone at 24 h. In conclusion, 0.75 mg/kg polymyxin B combined with 100 mg minocycline via 2 h infusion could be a promising treatment option for CRAB bloodstream infections.  相似文献   

20.
Oxidized bacterial nanocellulose (OBC) is reported to prevent microbial growth, but its antibacterial characteristics and mechanism are still unclear. Here, the antibacterial mechanism of OBC is explored by detecting and assessing the interaction of OBC with different carboxyl content on Staphylococcus aureus and Escherichia coli. The results show that OBC has strong antibacterial activity and antibiofilm activity against S. aureus and E. coli, which is positively correlated with the carboxyl content of OBC. After OBC treatment, the bacteria adhesion is inhibited and the cell membrane is destroyed leading to increased permeability. Further investigation reveals that the concentration of cyclic diguanosine monophosphate (c-di-GMP) that induced biofilm formation is significantly decreased to 1.81 pmol mg−1 after OBC treatment. In addition, OBC inactivates mature biofilms, with inactivation rates up to 79.3%. This study suggests that OBC has excellent antibacterial and antiadhesion properties, which can increase the cell membrane permeability and inhibit c-di-GMP formation. In addition, OBC also has a strong inactivation effect on mature biofilm, which can be used as an effective antibiofilm agent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号