首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mass spectrometry-based strategies are widely used for mapping of post-translational modifications of phosphoproteins. However, the presence of large amounts of non-phosphopeptides seriously interferes by suppressing the intensities of signals for phosphopeptides in direct MALDI-MS techniques due to the low stoichiometry of protein phosphorylation. Several MALDI-MS approaches are known which use either nanoparticles (NPs) as affinity probes, or NPs as microwave heat absorbers. They assist in the enrichment of trace levels of phosphopeptides from complex protein digests and require minimal sample pretreatment, digestion times, and sample volume. This leads to enhance sensitivity and selectivity in the analysis of the phosphoproteomes. This review (with 89 refs.) summarizes and discusses recent developments in the field, with a particular focus on the potential use of nanomaterials such as metal oxides, metal NPs, NPs-coated target plates, and as core-shell nanocomposites acting as affinity probes and as heat absorbers in MALDI-MS analysis of phosphoproteomes.
Figure
We discuss recent developments in the field with the focus on the potential use of nanomaterials, including metal oxides, metal NPs, NPs-coated target plate, core-shell microsphere nanocomposites as affinity probes and as heat absorbers to enhance the performance of MALDI-MS to phosphoproteome analysis. Schematic representation of microwave tryptic digest of casein proteins and their enrichment using DDTC-Au NPs as affinity probes.  相似文献   

2.
We report on silver–gold core-shell nanostructures that contain Methylene Blue (MB) at the gold–silver interface. They can be used as reporter molecules in surface-enhanced Raman scattering (SERS) labels. The labels are stable and have strong SERS activity. TEM imaging revealed that these nanoparticles display bright and dark stripe structures. In addition, these labels can act as probes that can be detected and imaged through the specific Raman signatures of the reporters. We show that such SERS probes can identify cellular structures due to enhanced Raman spectra of intrinsic cellular molecules measured in the local optical fields of the core-shell nanostructures. They also provide structural information on the cellular environment as demonstrated for these nanoparticles as new SERS-active and biocompatible substrates for imaging of live cells.
Figure
The synthesis of MB embedded Ag/Au CS NPs ,and the results of these NPs were used in probing and imaging live cells as SERS labels  相似文献   

3.
Surface-enhanced Raman scattering (SERS) hybrid probes are characterized by the typical spectrum of a reporter molecule. In addition, they deliver information from their biological environment. Here, we report SERS hybrid probes generated by conjugating different reporter molecules to bovine serum albumin (BSA) and using gold nanoparticles as plasmonic core. Advantages of the BSA-conjugate hybrid nanoprobes over other SERS nanoprobes are a high biocompatibility, stabilization of the gold nanoparticles in the biological environment, stable reporter signals, and easy preparation. The coupling efficiencies of the BSA–reporter conjugates were determined by MALDI-TOF-MS. The conjugates’ characteristic SERS spectra differ from the spectra of unbound reporter molecules. This is a consequence of the covalent coupling, which leads to altered SERS enhancement and changes in the chemical structures of the reporter and of BSA. The application of the BSA–reporter conjugate hybrid probes in 3T3 cells, including duplex imaging, is demonstrated. Hierarchical cluster analysis and principal components analysis were applied for multivariate imaging using the SERS signatures of the incorporated SERS hybrid nanoprobes along with the spectral information from biomolecules in endosomal structures of cells. The results suggest more successful applications of the SERS hybrid probes in cellular imaging and other unordered high-density bioanalytical sensing.
Figure
Single pixel spectrum obtained with SERS hybrid nanoprobes (here: BSA-AO conjugate on gold nanoparticles) inside living 3T3 cells. The distribution of SERS hybrid nanoprobes in 3T3 fibroblast cells can be obtained from chemical mapping, and from hierarchical cluster analysis (HCA) mapping employing the full spectral range from 300–1700 cm-1  相似文献   

4.
We present hybrid films consisting of a composite prepared from polystyrene (PS) and titanium dioxide (titania; TiO2) and molecularly imprinted with 1-pyrenebutyric acid (PBA). The interaction of PBA with the polymer is shown to occur via binding of the carboxylic group to TiO2 and hydrophobic interaction of the pyrene moiety with the PS network. We investigated the effects of the PS fraction on morphology, imprinting properties, and guest binding. The template could be completely removed by incubating the films in an acetonitrile solution of pyrene, which is due to the stronger π–π interaction between PBA and pyrene than the interaction between PBA and its binding site. A guest binding study with pyrene, 1-aminopyrene, pyrenemethanol, and anthracene-9-carboxylic acid showed that the hybrid films possessed selectivity and much higher binding capacity for PBA. This study demonstrates the first case of clear PS-assisted imprinting, where the π–π interaction of the template with a linear (non-crosslinked) polymer creates selective binding sites and enhances the binding capacity. This is a driving force for guest binding in addition to the interaction of the template/analyte with TiO2. All molecularly imprinted films displayed better binding, repeatability and reversibility compared to the respective non-imprinted films.
Figure
Illustration of the fabricated polystyrene/titania hybrids imprinted with 1-pyrenebutyric acid providing the interaction between the organic and inorganic components through the pyrene and carboxylic moieties  相似文献   

5.
We describe a novel surface-enhanced Raman scattering (SERS) tag that is based on Au/Ag core-shell nanostructures embedded with p-aminothiophenol. The Au/Ag core-shell sandwich nanostructures demonstrate bright and dark stripe structure and possess very strong SERS activity. Under optimum conditions, the maximum SERS signal was obtained with a 10?nm thick Ag nanoshell, and the enhancement factor is 3.4?×?104 at 1077?cm?1. After conjugation to the antibody of muramidase releasing protein (MRP), the Au/Ag core-shell nanostructures were successfully applied to an SERS-based detection scheme for MRP based on a sandwich type of immunoassay.
Figure
A novel SERS tag of p-Aminothiophenol (pATP) embedded Au/Ag core-shell nanostructures were prepared by adding precursor solution (AgNO3) into the original Au nanoparticles (NPs) solution. The synthesized SERS tags, as a biosensers, were further applied to detect a biomarker protein of SS2  相似文献   

6.
The fluorescent microsphere has been increasingly used as detecting label in immunoassay because of its stable configuration, high fluorescence intensity, and photostability. In this paper, we developed a novel lateral flow fluorescent microsphere immunoassay (FMIA) for the determination of sulfamethazine (SMZ) in milk in a quantitative manner with high sensitivity, selectivity, and rapidity. A monoclonal antibody to SMZ was covalently conjugated with the carboxylate-modified fluorescent microsphere, which is polystyrene with a diameter of 200 nm. Quantitative detection of SMZ in milk was accomplished by recording the fluorescence intensity of microspheres captured on the test line after the milk samples were diluted five times. Under optimal conditions, the FMIA displays a rapid response for SMZ with a limit of detection of as low as 0.025 ng mL?1 in buffer and 0.11 μg L?1 in milk samples. The FMIA was then successfully applied on spiked milk samples and the recoveries ranged from 101.1 to 113.6 % in the inter-batch assay with coefficient of variations of 6.0 to 14.3 %. We demonstrate here that the fluorescent microsphere-based lateral flow immunoassay (LFIA) is capable of rapid, sensitive, and quantitative detection of SMZ in milk.
Figure
Schematic illustration of the strategy for sulfamethazine detection using a lateral flow fluorescent microsphere immunoassay  相似文献   

7.
A selective aptameric sequence is adsorbed on a two-dimensional nanostructured metallic platform optimized for surface-enhanced Raman spectroscopy (SERS) measurements. Using nanofabrication methods, a metallic nanostructure was prepared by electron-beam lithography onto a glass coverslip surface and embedded within a microfluidic channel made of polydimethylsiloxane, allowing one to monitor in situ SERS fingerprint spectra from the adsorbed molecules on the metallic nanostructures. The gold structure was designed so that its localized surface plasmon resonance matches the excitation wavelength used for the Raman measurement. This optofluidic device is then used to detect the presence of a toxin, namely ochratoxin-A (OTA), in a confined environment, using very small amounts of chemicals, and short data acquisition times, by taking advantage of the optical properties of a SERS platform to magnify the Raman signals of the aptameric monolayer system and avoiding chemical labeling of the aptamer or the OTA target.
Fig
Aptamer detection of OTA within a SERS/microfluidic channel  相似文献   

8.
The use of nanoparticles (NPs) can substantially improve the analytical performance of surface plasmon resonance imaging (SPRi) in general, and in DNA sensing in particular. In this work, we report on the modification of the gold surface of commercial biochips with gold nanospheres, silica-coated gold nanoshells, and silver nanoprisms, respectively. The NPs were tethered onto the surface of the chip and functionalized with a DNA probe. The effects of tethering conditions and varying nanostructures on the SPRi signals were evaluated via hybridization assays. The results showed that coupling between planar surface plasmons and electric fields, generated by localized surface plasmons of the NPs, is mandatory for signal enhancement. Silver nanoprisms gave the best results in improving the signal change at a target DNA concentration of <50 nM by +50 % (compared to a conventional SPRi chip). The limit of detection for the target DNA was 0.5 nM which is 5 times less than in conventional SPRi.
Figure
?  相似文献   

9.
Oligonucleotide-modified nanoparticle conjugates show highly promising potential for SERS-based DNA detection. However, it remains challenging to carry out the SERS-based DNA detection in aqueous solutions directly using oligonucleotide-modified nanoparticles, because the Raman reporters would exhibit lower signals when they are dispersed in aqueous solutions than laid on “dry” metal nanoparticles. Here, we synthesized stable oligonucleotide-modified Ag nanoprism conjugates, and performed SERS-based DNA detection in aqueous solution directly by using such conjugates in combination with Raman reporter-labeled, oligonucleotide-modified gold nanoparticles. The experimental results indicate that this SERS-based DNA detection approach exhibited a good linear correlation between SERS signal intensity and the logarithm of target DNA concentration ranging from 10?11~10?8 M. This sensitivity is comparable to those SERS-based DNA detection approaches with the “dry” process. Additionally, a similar correlation could also be observed in duplex target DNA detection by SERS hybrid probes. Our results suggest that the oligonucleotide-modified Ag nanoprisms may be developed as a powerful SERS-based DNA detection tool.
Scheme of SERS-based DNA detection in aqueous solutions. Capture DNA-modified Ag nanoprisms and Raman reporter-labeled, report DNA-modified gold nanoparticles are utilized in the detection  相似文献   

10.
We show that BaTiO3 nanoparticles (NPs) can be used as a novel substrate for the rapid enrichment of phosphopeptides from microwave tryptic digests of α-casein and non-fat milk prior to their identification by MALDI-MS. Protein digestion is achieved by microwave tryptic digest for 50?s, and the resulting phosphopeptides can be effectively adsorbed on the surfaces of the NPs. The phosphopeptides were selectively detected via MALDI-MS. Digestion, enrichment and detection are accomplished within ~60?min. The method was applied to the indentification of 24 phosphopeptides from α-casein and of 21 phosphopeptides (of the α-casein type) from nonfat milk.
Figure
BaTiO3 NPs as affinity probes for the rapid analysis of phosphopeptides by MALDI MS  相似文献   

11.
We have developed a sensitive, specific, rapid and low cost picoliter microsphere-based platform for bioanalyte detection and quantification. In this method, a biological sample, biosensing microspheres, and fluorescently labeled detection (secondary) antibodies are co-encapsulated to capture the analyte (here: human anti-tetanus immunoglobulin G) on the surface of the microsphere in microfluidic pL-sized droplets. The absorption of the analyte and detecting antibodies on the microsphere concentrate the fluorescent signal in correlation with analyte concentration. Using our platform and commercially available antibodies, we were able to quantify anti-tetanus antibodies in human serum. In comparison to standard bulk immunosorbent assays, the microfluidic droplet platform presented here reduces the reagent volume by four orders of magnitude, while fast reagent mixing reduces the detection time from hours to minutes. We consider this platform to be a major leap forward in the miniaturization of immunosorbent assays and to provide a rapid and low cost tool for global point-of-care.
Figure
We have developed a sensitive, specific, rapid and low cost pico-liter microsphere based platform for detection and quantification of human anti-tetanus immunoglobulin G. In this method, a biological sample, biosensing microspheres, and fluorescently labeled detection antibodies are co-encapsulated to capture the analyte on the surface of the microsphere in microfluidic pL-sized droplets. Using our platform and commercially available antibodies, we quantified the anti-tetanus antibodies content in human serum.  相似文献   

12.
A polystyrene‐block‐poly(2‐vinylpyridine) (PS‐b‐P2VP) micellar structure with a P2VP core containing 5 nm CdS nanoparticles (NPs) and a PS shell formed in toluene that is a good solvent for PS block undergoes the core‐shell inversion by excess addition of methanol that is a good solvent for P2VP block. It leads to the formation of micellar shell‐embedded CdS NPs in the methanol major phase. The spontaneous crystalline growth of Au NPs on the CdS surfaces positioned at micellar shells without a further reduction process is newly demonstrated. The nanostructure of Au/CdS/PS‐b‐P2VP hybrid NPs is confirmed by transmission electron microscopy, energy‐dispersive X‐ray, and UV‐Vis absorption.

  相似文献   


13.
In this work, an electrochemical dihydronicotinamide adenine dinucleotide (NADH) sensor based on the catalytic growth of Au nanoparticles (Au NPs) on glassy carbon electrode was developed. Catalyzed by Au NPs immobilized on pretreated glassy carbon electrode, the reduction of AuCl4 ? in the presence of hydroquinone and cetyltrimethyl ammonium chloride led to the formation of enlarged Au NPs on the electrode surface. Spectrophotometry and high-resolution scanning electronic microscope (SEM) analysis of the sensor morphologies before and after biocatalytic reaction revealed a diameter growth of the nanoparticles. The catalytic growth of Au NPs on electrode surface remarkably facilitated the electron transfer and improved the performance of the sensor. Under optimal conditions, NADH could be detected in the range from 1.25?×?10?6 to 3.08?×?10?4 M, and the detection limit was 2.5?×?10?7 M. The advantages of the proposed sensor, such as high precision and sensitivity, fast response, low cost, and good storage stability, made it suitable for on-line detection of NADH in complex biological systems and contaminant degradation processes.
Figure
Schematic presentation of the bioelectrocatalytic sensing of NADH  相似文献   

14.
We report on a facile immunoassay for porcine circovirus type 2 (PCV2) based on surface enhanced Raman scattering (SERS) using multi-branched gold nanoparticles (mb-AuNPs) as substrates. The mb-AuNPs in the immunosensor act as Raman reporters and were prepared via Tris base-induced reduction and subsequent reaction with p-mercaptobenzoic acid (pMBA). They possess good stability and high SERS activity. Subsequently, the modified mb-AuNPs were covalently conjugated to the monoclonal antibody (McAb) against the PCV2 cap protein to form SERS immuno nanoprobes. These were captured in a microtiterplate via a immunoreaction in the presence of target antigens. The effects of antibody concentration, reaction time and temperature on the sensitivity of the immunoassay were investigated. Under optimized assay conditions, the Raman signal intensity at 1,076 cm?1 increases logarithmically with the concentrations of PCV2 in the concentration ranging from 8?×?102 to 8?×?106 copies per mL. The limit of detection is 8?×?102 copies per mL. Compared to conventional detecting methods such as those based on PCR, the method presented here is rapid, facile and very sensitive.
Figure
A simple and novel approach to detect porcine circovirus type 2 using surface enhanced Raman scattering (SERS) of multi-branched gold nanoparticles is demonstrated, it has a higher sensitivity than polymerase chain reaction and ELISA.  相似文献   

15.
We have prepared a graphene-based hybrid nanomaterial by electrochemical deposition of cobalt oxide nanoparticles (CoOxNPs) on the surface of electrochemically reduced graphene oxide deposited on a glassy carbon electrode (GCE). Scanning electron microscopy and cyclic voltammetry were used to characterize the immobilized nanoparticles. Electrochemical determination of H2O2 is demonstrated with the modified GCE at pH 7. Compared to GCEs modified with CoOxNPs or graphene sheets only, the new electrode displays larger oxidative current response to H2O2, probably due to the synergistic effects between the graphene sheets and the CoOxNPs. The sensor responds to H2O2 with a sensitivity of 148.6 μA mM?1 cm?2 and a linear response range from 5 μM to 1 mM. The detection limit is 0.2 μM at a signal to noise ratio (SNR) of three. The method was successfully applied to the determination of H2O2 in hydrogen peroxide samples.
Figure
A highly sensitive H2O2 sensor using a glassy carbon electrode modified with cobalt oxide nanoparticles/electrochemical reduced graphene oxide (CoOxNPs/ERGO) hybrids is presented.  相似文献   

16.
Template-synthesis method was one of the important methods for the preparation of hollow microspheres. In present work, polystyrene (PS) microspheres were initially synthesized and effects of reaction conditions on the particle size and distribution of PS microspheres were studied. Then sulfonated PS (SPS) microspheres and spherical core (PS) /shell (polypyrrole, PPy) were synthesized by sulfonated and template method respectively. The method was that pyrrole (Py) on the surface of SPS microspheres were polymerized. Then PS (core)-PPy (shell) microspheres by dissolving PS inner core in N, N-Dimethylformamide (DMF), and hollow polypyrrole (HPPy) microspheres were obtained (Figure 1). Thereafter, HPPy microspheres were characterized by fourier transform infrared spectroscopy, X-ray diffraction, particle size analyzer, scanning electron microscope, thermal gravimetric analysis and KDY-4 four-probe resistance meter. The results showed that the size range of PS microspheres were 200~300 nm. HPPy microspheres have been successfully synthesized with good electrical conductivity and excellent thermal stability.  相似文献   

17.
Surface enhanced Raman spectroscopy (SERS) has emerged as one of the most promising analytical tools in recent years. Due to advantageous features such as sensitivity, specificity, ease of operation and rapidity, SERS is particularly well suited for environmental analysis. We summarize here some considerations with respect to the detection of pollutants by SERS and provide an overview on recent achievements in the determination of organic pollutants, heavy metal ions, and pathogens. Following an introduction into the topic and considering aspects of sensitivity, selectivity, reproducibility and portability, we are summarizing applications of SERS in the detection of pollutants, with sections on organic pollutants (pesticides, PAHs and PCBs, explosives), on heavy metal ions, and on pathogens. In addition, we discuss current challenges and give an outlook on applications of SERS in environmental analysis. Contains 174 references.
Figure
The application of surface enhanced Raman spectroscopy (SERS) for the detection of environmental pollutants.  相似文献   

18.
Microextraction by packed sorbents (MEPS) combined with Surface-enhanced Raman spectroscopy (SERS) was investigated, and applied to the determination of musk ketone (MK) in river water samples. The full MEPS–SERS method includes analyte enrichment by MEPS preconcentration with C18 sorbent followed by SERS detection supported by silver nanoparticles. An eluent drop containing the analyte is deposited directly from the MEPS syringe on a CaF2 glass plate. When the drop has dried, a specific volume of silver nanoparticles solution is added on it before each SERS measurement. Several experimental variables were studied in depth; under the optimum experimental conditions MK can be extracted from a 500 μL sample with recoveries in the range 47–63 %. The limit of detection was 0.02 mg L?1 and the relative standard deviation 15.2 % (n?=?4). Although not investigated in this work, the proposed method might be suitable for in-situ monitoring, because of the portability of the Raman spectrometer used.
Figure
Experimental scheme of the MEPS-SERS method proposed for the determination of musk ketone in river water  相似文献   

19.
Silver nanoparticles (Ag NPs) modified with sodium 2-mercaptoethanesulfonate (mesna) exhibit strong surface-enhanced Raman scattering (SERS). Their specific and strong interaction with heavy metal ions led to a label-free assay for Hg(II). The covalent bond formed between mercury and sulfur is stronger than the one between silver and sulfur and thus prevents the adsorption of mesna on the surface of Ag NPs. This results in a decrease of the intensity of SERS in the presence of Hg(II) ions. The Raman peak at 795?cm?1 can be used for quantification. The effect of the concentration of mesna, the concentration of sodium chloride, incubation time and pH value on SERS were optimized. Under the optimal conditions, the intensity of SERS decreases with increasing concentration of Hg(II). The decrease is linear in the 0.01 and 2?μmol L?1 concentration range, with a correlation coefficient (R2) of 0.996 and detection limit (S/N?=?3) is 0.0024?μmol L?1. The method was successfully applied to the determination of the Hg(II) in spiked water samples.
Figure
SERS spectra of mesna-Ag NPs system in the presence of Hg2+. Concentrations of Hg2+: (1) 0.1×10-7, (2) 1×10-7, (3) 3.5×10-7, (4) 5×10-7, (5) 12×10-7, (6) 20×10-7mol L-1  相似文献   

20.
We describe a highly sensitive and selective amperometric sensor for the determination of nitrite. A glassy carbon electrode was modified with a composite made from gold nanoparticles (AuNPs) and sulfonated graphene (SG). The modified electrode displays excellent electrocatalytic activity in terms of nitrite oxidation by giving much higher peak currents (at even lower oxidation overpotential) than those found for the bare electrode, the AuNPs-modified electrode, and the SG-modified electrode. The sensor has a linear response in the 10 μM to 3.96 mM concentration range, a very good detection sensitivity (45.44 μA mM?1), and a lower detection limit of 0.2 μM of nitrite. Most common ions and many environmental organic pollutants do not interfere. The sensor was successfully applied to the determination of nitrite in water samples, and the results were found to be consistent with the values obtained by spectrophotometry.
Figure
A highly sensitive amperometric sensor for nitrite using a glassy carbon electrode modified with gold nanoparticles/sulfonated graphene (AuNPs/SG) composites is presented  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号