首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Semiconductor nanowires of silicon have been synthesized within the pores of mesoporous silica using a novel supercritical fluid solution-phase approach. Mesoporous silica, formed by the hydrolysis of tetramethoxysilane (TMOS) in the presence of a triblock copolymer surfactant, was employed for the nucleation and growth of quantum-confined nanowires. The filling of the silica mesopores with crystalline silicon and the anchoring of these nanowires to the sides of the pores were confirmed by several techniques including electron microscopy, powder X-ray diffraction, 29Si magic angle spinning nuclear magnetic resonance, infrared spectroscopy, and X-ray fluorescence. Effectively, the silica matrix provides a means of producing a high density of stable, well-ordered arrays of semiconductor nanowires in a low dielectric medium. The ordered arrays of silicon nanowires also exhibited discrete electronic and photoluminescence transitions that could be exploited in a number of applications, including nanodevices and interconnects.  相似文献   

4.
Formation of titanium nitride nanoparticles within mesoporous silica SBA-15   总被引:2,自引:0,他引:2  
We report the first synthesis of titanium nitride (TiN) nanoparticles inside the nanoscale channels of mesoporous silica SBA-15. The TiN precursor, Ti(NMe(2))(4) in toluene, was incorporated into the methyl group-modified channels of the SBA-15 powder. The functionalization of pore surfaces with methyl groups generates hydrophobic surfaces that facilitate impregnation with Ti(NMe(2))(4) and minimizes reactions between the TiN precursor and the hydroxyl groups on the surface of SBA-15. Formation of TiN nanoparticles inside the mesoporous channels of SBA-15 was carried out by subsequent ammonolysis at high temperatures (700-750 degrees C). The final products have been characterized by TEM and EELS images, powder XRD patterns, FTIR spectra, UV-vis absorption spectra, and nitrogen adsorption isotherm measurements to confirm the presence and distribution of TiN nanoparticles in the SBA-15 samples.  相似文献   

5.
We report the first formation of arrays of InN nanorods inside the nanoscale channels of mesoporous silica SBA-15. In(NO3)3 dissolved in methanol was incorporated into SBA-15 powder without prior pore surface functionalization. Formation of InN nanorod arrays was carried out by ammonolysis at 700 degrees C for 8 h. The final products have been characterized by FT-IR spectra, (29)Si MAS NMR spectra, Raman spectra, XRD patterns, TEM images, nitrogen adsorption-desorption isotherm measurements, and optical spectroscopy. The freestanding InN nanorods observed after silica framework removal with HF solution show diameters of 6-7.5 nm and lengths of 25-50 nm. Formation of a trace amount of In2O3 was also verified. The InN nanorods exhibit a broad band centered at around 550-600 nm, and a band gap energy of 1.5 eV was determined. No light absorption in the near-IR region was measured. The nanorods give a weak emission band centered at around 600 nm. These optical properties are believed to be related to the possible incorporation of oxygen during InN nanorod synthesis.  相似文献   

6.
Zn(x)Cd(1-x)Se alloy nanowires, with composition x = 0, 0.2, 0.5, 0.7, and 1, have been successfully synthesized by a chemical vapor deposition (CVD) method assisted with laser ablation. The as-synthesized alloy nanowires, 60-150 nm in diameter and several tens of micrometers in length, complied with a typical vapor-liquid-solid (VLS) growth mechanism. The Zn(x)Cd(1-x)Se nanowires are single crystalline revealed from high-resolution transmission electron microscopic (HRTEM) images, selected area electron diffraction (SAED) patterns, and X-ray diffraction (XRD) measurement. Compositions of the alloy nanowires can be adjusted by varying the precursor ratios of the laser ablated target and the CVD deposition temperature. Crystalline structures of the Zn(x)Cd(1-x)Se nanowires are hexagonal wurtzite at x = 0, 0.2, and 0.5 with the [0 1 -1 0] growth direction and zinc blende at x = 0.7 and 1 with the [1 -1 1] growth direction. Energy gaps of the Zn(x)Cd(1-x)Se nanowires, determined from micro-photoluminescence (PL) measurements, change nonlinearly as a quadratic function of x with a bowing parameter of approximately 0.45 eV. Strong PL from the Zn(x)Cd(1-x)Se nanowires can be tuned from red (712 nm) to blue (463 nm) with x varying from 0 to 1 and has demonstrated that the alloy nanowires have potential applications in optical and sensory nanotechnology. Micro-Raman shifts of the longitudinal optical (LO) phonon mode observed in the Zn(x)Cd(1-x)Se nanowires show a one-mode behavior pattern following the prediction of a modified random element isodisplacement (MREI) model.  相似文献   

7.
Highly dispersed gold nanoparticles have been incorporated into the pore channels of SBA-15 mesoporous silica through a newly developed strategy assisted by microwave radiation (MR). The sizes of gold are effectively controlled attributed to the rapid and homogeneous nucleation, simultaneous propagation and termination of gold precursor by MR. Diol moieties with high dielectric and dielectric loss constants, and hence a high microwave activation, were firstly introduced to the pore channels of SBA-15 by a simple addition reaction between amino group and glycidiol and subsequently served as the reduction centers for gold nanoparticles. Extraction of the entrapped gold from the nanocomposite resulted in milligram quantities of gold nanoparticles with low dispersity. The successful assembly process of diol groups and formation of gold nanoparticles were monitored and tracked by solid-state NMR and UV-vis measurements. Characterization by small angle X-ray diffraction (XRD) and transmission electron microscopy (TEM) indicated that the incorporation of gold nanoparticles would not breakup the structural integrity and long-range periodicity of SBA-15. The gold nanoparticles had a narrow size distribution with diameters in the size range of 5-10 nm through TEM observation. The average particles size is 7.9 nm via calculation by the Scherrer formula and TEM measurements. Nitrogen adsorption and desorption isotherms gave further evidence that the employed method was efficient and gold nanoparticles were successfully incorporated into the pore channels of SBA-15.  相似文献   

8.
By modifying and optimizing the procedures, which were well described and understood for the synthesis of macroporous alumina, mesoporous alumina–based film has been successfully prepared, In this paper, the orderly mesoporous Al2O3 thin film was prepared by electrochemical workstation, and via supported N‐octyltriethoxysilane (NOS) coupling agent, corrosion inhibitors be loaded into the different pore sizes of mesoporous alumina films. The physicochemical properties of this thin inhibitors carrier film were characterized. Corrosion resistance of mesoporous alumina and honeycomb ceramic macroporous alumina were compared; the conclusion shows that mesoporous alumina film can be used as good corrosion inhibitors carrier and bring out a high‐efficiency inhibition result. Simultaneously, by compared with corrosion inhibition of different pore sizes (20‐50 nm) mesoporous alumina who absorbed NOS, and a general relationship between the different mesoporous alumina pore sizes and the adsorption capacity of NOS was obtained.  相似文献   

9.
We report the first formation of arrays of GaN nanorods inside the nanoscale channels of mesoporous silica SBA-15. GaCl3 dissolved in toluene was incorporated into the methyl group-functionalized SBA-15 powder. The pore surfaces functionalized with methyl groups should facilitate the impregnation with GaCl3. Formation of GaN nanorod arrays within SBA-15 was carried out by heating the powder to 700 degrees C for 3 h under nitrogen atmosphere, followed by ammonolysis at 900 degrees C for 5 h. epsilon-Ga2O3, an unusual phase for Ga2O3, formed after the first thermal process and was converted into wurtzite GaN during ammonolysis. The final products have been characterized by FT-IR spectra, powder XRD patterns, TEM images and SAED patterns, EDS analysis, and nitrogen adsorption-desorption isotherm measurements to confirm the presence of GaN nanostructures. The nanorods are 6-7.5 nm in diameter, and can be a few hundreds of a nanometer in length to exhibit nanowire structure. Free-standing GaN nanorod arrays were revealed upon removal of the silica framework with HF solution. Optical characterization of the isolated GaN nanorod arrays shows a strong and sharp near band-edge emission at 375 nm, and two phonon-assisted donor-acceptor peaks at 395 and 415 nm. A broad but weak emission in the region of 335-360 nm due to the quantum confinement effect of short nanorods was observed.  相似文献   

10.
Ag nanowires within the channels of mesoporous silica have been successfully synthesized via a double solvent technique, in which n-hexane is used as a hydrophobic solvent to disperse mesoporous silica and an AgNO(3) aqueous solution is used as a hydrophilic solvent to fill mesochannels. The morphology of the obtained Ag (nanowires, nanoparticles or nanorods) can be controlled by adjusting the concentration of AgNO(3) solution and the template pore size. HRTEM images demonstrate extensive Ag nanowires with several to tens of hundreds nanometers in length are deposited along the long axis of mesochannels when the atomic AgNO(3)/Si ratio is 0.090. When the atomic AgNO(3)/Si ratio is 0.068 or 0.11, there is a combination of Ag nanoparticles and nanowires; nanoparticles are mainly formed when the atomic AgNO(3)/Si ratio is higher than 0.14. Further, the catalytic results of the oxidation of styrene show that styrene oxide and benzaldehyde are the main products of the reaction, and the morphology and diversity of Ag in Ag/mesoporous silica composites have an effect on the conversion of styrene and selectivity of styrene oxide.  相似文献   

11.
Kai Yu 《Tetrahedron》2009,65(1):305-55
Two chiral Mn(III) salen complexes were immobilized onto a series of mesoporous MCM-41 and MCM-48 materials with different pore sizes and the as-synthesized catalysts were active and enantioselective for the asymmetric epoxidation of styrene and indene. The results of XRD, FTIR, DR UV-vis, and N2 sorption showed that the chiral Mn(III) salen complexes were anchored in the channels of mesoporous materials. The influence of organic silicane dosage on the catalytic performance was studied and the optimum dosage of organic silicane for preparing heterogeneous catalysts was determined. Furthermore, the effect of the fine-tuning of pore size on the performance of heterogeneous catalysts was discussed. In general, larger pore size of the supports could lead to higher conversions and the compatible pore size with substrate may be responsible for the improved enantiomeric excess (ee) values.  相似文献   

12.
Azobenzene (Az) groups were planted on the pore wall of mesoporous silica MCM-41 (M41) by silylation of triethoxy[4-phenylazo(phenyl)]silane. The optimal surface density of Az groups was 0.9 group nm-2, and too much loading of Az induced the lowering of the efficiency of the trans-cis isomerization due to the congestion of the groups. The reversible change in the pore diameters upon UV-vis irradiation could not be confirmed by N2 adsorption at 77 K but was revealed to be ca. 1.0 nm by the shift of the UV-vis absorption band of p-N,N-dimethylaminobenzylidenemalononitrile introduced into the Az-modified pores.  相似文献   

13.
A wide range of mercaptopropyl-functionalized silica spherical particles of MCM-41 and MCM-48 (M41S family) have been prepared by co-condensation of mercaptopropyl trimethoxysilane (MPTMS) or mercaptopropyl triethoxysilane (MPTES) and tetraethoxysilane (TEOS) precursors in hydroalcoholic medium in the presence of a cationic surfactant as templating agent and ammonia as catalyst. It was possible to control the mesostructure type (hexagonal or cubic) by monitoring the water-to-ethanol ratio and the type of organoalkoxysilane precursor employed. Materials displaying various functionalization levels were obtained by varying the MPTMS or MPTES contents from 3 to 50% in the co-condensation synthesis medium. This gave rise to a wide range of porous solids with approximately the same particle size and morphology but featuring different functionalization levels and various degrees of structural order. They were characterized by X-ray diffraction (XRD), N2 adsorption-desorption isotherms and BET analysis, scanning and transmission electron microscopy, 29Si and 13C solid state nuclear magnetic resonance (NMR), particle size distribution measurements, and elemental chemical analysis. Mercaptopropyl groups were readily incorporated with high yields (>90%) by the co-condensation route. All samples exhibited spherical morphology with similar particle size but both the level of ordering and porosity of solids obtained by co-condensation were found to decrease when increasing the amount of organo-functional groups.  相似文献   

14.
Early electrosynthesized polythiophene nanowires were prepared employing a mesoporous silica template, which was also electrochemically produced. A cathodic potential step was applied to a fluorine doped tin oxide conducting glass electrode in a cationic surfactant and silicate reagent medium to deposit highly ordered mesoporous silica films. To evaluate the pores order and, consequently, optimal deposition potential, the electrochemical response of the electrodes was studied using ferrocene as redox probe. The modified electrodes were used to accomplish polythiophene electrodeposits employing 0.6 mM thiophene and 0.1 M tetrabutylammonium hexafluorophosphate in anhydrous CH3CN as working solution. Transmission electron microscope images of the deposits revealed the presence of polythiophene nanowires of about 6 nm in diameter arranged normal to the electrode surface. The unprecedented small size and arrangement of the obtained nanowires place this work as the first study that successfully accomplished the formation of nanoscale electrochemically synthesized conducting polymer nanowires.  相似文献   

15.
Highly dispersed gold particles (<2 nm) were synthesized within the pores of mesoporous silica with pore sizes ranging from 2.2 to 6.5 nm and different pore structures (2D-hexagonal, 3D-hexagonal, and cubic). The catalysts were reduced in flowing H2 at 200 degrees C and then used for CO oxidation at temperatures ranging from 25 to 400 degrees C. The objective of this study was to investigate the role of pore size and structure in controlling the thermal sintering of Au nanoparticles. Our study shows that sintering of Au particles is dependent on pore size, pore wall thickness (strength of pores), and pore connectivity. A combination of high-resolution TEM/STEM and SEM was used to measure the particle size distribution and to determine whether the Au particles were located within the pores or had migrated to the external silica surface.  相似文献   

16.
Magnetic mesoporous silica nanoparticles (M-MSNs) are emerging as one of the most appealing candidates for theranostic carriers. Herein, a simple synthesis method of M-MSNs with a single Fe(3)O(4) nanocrystal core and a mesoporous shell with radially aligned pores was elaborated using tetraethyl orthosilicate (TEOS) as silica source, cationic surfactant CTAB as template, and 1,3,5-triisopropylbenzene (TMB)/decane as pore swelling agents. Due to the special localization of TMB during the synthesis process, the pore size was increased with added TMB amount within a limited range, while further employment of TMB lead to severe particle coalescence and not well-developed pore structure. On the other hand, when a proper amount of decane was jointly incorporated with limited amounts of TMB, effective pore expansion of M-MSNs similar to that of analogous mesoporous silica nanoparticles was realized. The resultant M-MSN materials possessed smaller particle size (about 40-70 nm in diameter), tunable pore sizes (3.8-6.1 nm), high surface areas (700-1100 m(2)/g), and large pore volumes (0.44-1.54 cm(3)/g). We also demonstrate their high potential in conventional DNA loading. Maximum loading capacity of salmon sperm DNA (375 mg/g) was obtained by the use of the M-MSN sample with the largest pore size of 6.1 nm.  相似文献   

17.
《天然气化学杂志》2012,(3):275-281
Precise control of the pore sizes for porous carbon materials is of importance to study the confinement effect of metal particles because the pore size in nanosize range will decide the physical and chemical properties of the metal nanoparticles.In this paper,we report a new approach for the synthesis of iron doped ordered mesoporous carbon materials with adjustable pore size using Fe-SBA-15 as hard template and boric acid as the pore expanding reagent.The pore size can be precisely adjusted by a step of 0.4 nm in the range of 3-6 nm.The carbonization temperature can be lowered to 773 K due to the catalytic role of the doped iron.The present approach is suitable for facile synthesis of metal imbedded porous carbon materials with tunable pore sizes.  相似文献   

18.
Journal of Solid State Electrochemistry - The aim of present study is to design a simple and reliable capacitive humidity sensor based on the nanoporous alumina prepared by a two-step anodization...  相似文献   

19.
20.
Novel spherical mesoporous silica materials with uniform diameters and starburst mesopore structures were synthesized by a simple one-step procedure with ethanol as the co-solvent in dilute aqueous solution and their formation mechanism was proposed. The arrangement of the pore canal and the diameter of the sphere could be tailored by altering the concentration of ethanol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号