首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Brannerite based ceramics, designed as a matrix for immobilization of high level radioactive waste (HLW), was investigated from the viewpoint of microstructure changes and atomic transport properties caused by leaching of the ceramics at pH 2 and 11, respectively. Scanning electron microscopy (SEM) and emanation thermal analysis (ETA) techniques were used for this purpose. Surface morphology, microstructure changes and transport properties of both ‘as-leached’ and ‘as-prepared’ samples were compared and the effect of leaching on the thermal behavior of the ceramics samples heated in the temperature range from 20 to 1250°C was characterized. The mobility of radon in the brannerite ceramics was evaluated by mathematical modeling from ETA results. The thermal behavior of the non-leached brannerite ceramics sample and its natural analogue brannerite mineral was compared using the ETA. On leave from the Institute of Chemical Sciences, Faculty of Sciences, P. J. Ŝafárik University, 041 54 Koŝice, Slovak Republic  相似文献   

2.
Emanation thermal analysis (ETA) was used for thermal characterization of microstructure changes taking place during heating of synthetic gibbsite sample in argon in the range of 25–1200°C. Microstructure development and the increase of the surface area under in-situ conditions of the sample heating were characterized. The increase of the radon release rate from 130–330°C monitored the increase of the surface area due to the dehydration of Al(OH)3. During heating of the sample in the range 450–1080°C the ETA results characterized the annealing of surface and near surface structure irregularities of intermediate products of gibbsite heat treatment. The mathematical model for the evaluation of the ETA experimental results was proposed. From the comparison of the experimental ETA results with the model curves it followed that the model is suitable for the quantitative characterization of microstructure changes taking place on heating of gibbsite sample. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

3.
4.
Emanation thermal analysis was used to characterize the thermal behaviour of alumina coatings as deposited on EUROFER 97 steel surface by filtered vacuum arc technique. Temperature ranges of the healing of cracks and structure irregularities observed by SEM were determined from the ETA results. Transport properties of the alumina coatings were assessed from the ETA results by the evaluation of radon diffusion parameters in the temperature range from 50 to 300°C. Healing microstructure irregularities of the alumina coatings can be expected in the range 300–700°C as indicated by the decrease of the radon release rate. From the ETA results it followed that the onset of healing the cracks observed by the SEM on the surface of one alumina coating sample can be expected at 430°C. Dedicated to Dr. K. Habersberger, Past-Chairman of the thermal analysis working group of the Czech Chemcial Society, at the occasion of his 75th birthday  相似文献   

5.
Emanation thermal analysis (ETA) was used for characterization of thermal behaviour of SiCf/SiC composites on heating in argon and air, respectively. Effect of gas environment (argon, air) and helium ions implantation on the microstructure development of the SiCf/SiC composite prepared by chemical vapour infiltration (CVI) from Nicalon CG fibres was investigated under in situ conditions of heating. The annealing of near surface structure irregularities was observed in the range 280-700°C and evaluated by means of the mathematical model, assuming that the structure irregularities served as diffusion paths for radon. The ETA reflected the formation of amorphous silica and its subsequent crystallization to crystoballite. Morphology of the SiCf/SiC samples before and after the heat treatments was characterized by means of SEM. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

6.
Thermal behaviour of N-doped titania powders prepared by heat treatment of anatase in gaseous ammonia at 550 and 575°C, respectively, was characterized by emanation thermal analysis (ETA). The ETA results were used to assess transport properties of the samples subsurface using the mobility data of radon atoms previously incorporated into the samples to the depth of 60 nm. It was demonstrated that the radon permeability of anatase in the temperature range 50–500°C was enhanced for the N-doped titania as compared to the non-doped titania powder. Microstructure changes accompanying the anatase-rutile transition were pointed out from the decrease of the radon release rate in the temperature range 850–1000°C. The results of surface area and porosity measurements, DTA results as well XRD patterns supported the ETA results.  相似文献   

7.
Thermal behavior of talc samples (from locality Puebla de Lillo, Spain) were characterized by emanation thermal analysis (ETA), DTA and TG. The ETA, based on the measurement of radon release rate from samples, revealed a closing up of surface micro-cracks and annealing of microstructure irregularities of the talc samples on heating in the range 200–500°C. For ground talc sample a crystallization of non-crystalline phase formed by grinding, into orthorhombic enstatite was characterized as a decrease of radon mobility in the range 785–825°C and by a DTA exothermal effect with the maximum at 830°C. ETA results characterized the microstructure development of the talc samples on heating and served to evaluate their radon mobility and transport properties on heating and cooling. Transport properties of the talc samples were evaluated by using ETA experimental data measured during heating to 600 and 1300°C, respectively, and subsequent cooling to room temperature.  相似文献   

8.
Coupled TG-FTIR technique was used for identification of gaseous compounds evolved at thermal treatment of six coal samples from different deposits (Bulgaria, Russia, Ukraine). The experiments were carried out under dynamic heating conditions up to 900°C at heating rates of 5, 10 or 50 K min–1 in a stream of dry air. The emission of CO2, H2O, CO, SO2, COS, methane, methanol, formic acid, formaldehyde, acetaldehyde, chlorobenzene was clearly identified in FTIR spectra of the samples studied. The formation of ethanol, ethane, ethylene and p-xylene, at least on the level of traces, was also identified. At the heating rate of 5°C min–1 the temperature of maximum intensities of the characteristic peaks of COS was 270°C, of formaldehyde, formic acid, ethane and methanol 330°C, of SO2, CO, acetic acid, ethylene and p-xylene 400°C and of chlorobenzene 500°C. At 10°C min–1 and 50°C min–1 these temperatures were shifted, respectively, by 70–300°C and 150–450°C towards higher temperatures and the respective absorption bands in FTIR spectra were, as a rule, more intensive.  相似文献   

9.
The thermal evolution of a slate rock sample (Berja, Almería, Spain) has been studied. The phase minerals identified in this sample were mica (illite), chlorite (clinochlore) and quartz as major components, with minor microcline, iron oxide and a mixed-layer or interstratified phase (montmorillonite-chlorite). This slate is highly silico-aluminous (48.33 mass% silica, 22.04 mass% alumina), and ca. 20 mass% of other elements, mainly Fe2O3 (8.35 mass%), alkaline-earths and alkaline oxides. Two main endothermic DTA effects, centered at 640 and 730°C, were observed. The more important contribution of total mass loss (7.15 mass%) was found between 500–900°C, with two DTG peaks detected at 630 and 725°C. All these effects were associated to the dehydroxylation of structural OH groups of 2:1 layered silicates mixed in the slate. The dehydroxylation of the layered silicates evidenced by dilatometry, produced a rapid increase of expansion between 600–800°C. The thermal evolution of the slate upper 800°C indicated the first sintering effects associated to shrinkage, which is also favoured by its low particle size (average 23 μm) and the presence of a liquid or vitreous phase as increasing the heating temperature. The application of thermal diffractometry to the slate sample allowed to study the formation of dehydroxylated crystalline phases from the layered silicates after heating. At 1000°C, β-quartz, dehydroxylated illite, iron oxide, relicts of microcline and the vitreous phase were present in the sample. All these results are interesting to know the thermal behaviour of a complex mineral mixture as identified in the slate.  相似文献   

10.
Emanation thermal analysis (ETA), DTA, SEM, and XRD were applied for the characterization of the effect of Na+ and NH 4 + ions used for saturation of natural Mg-vermiculite on the microstructure during heating. The microstructure changes were characterized by ETA under in situ conditions of samples heating in air in the temperature range 20–1300°C. It was found that Na+ and NH 4 + ions have a significant effect on the microstructure changes during heat treatment of the natural Mg-vermiculite sample saturated with these ions. For Mg-vermiculite and Na+ saturated vermiculite thet emperatures of the onset of the collapse of interlaminar space were determined by ETA. Differences in thermal stability of the microstructure of dehydrated vermiculite samples were observed by ETA: the microstructure of dehydrated Mg-vermiculite, and Na-vermiculite was found stable until 650 and 350°C, respectively. For dehydrated NH4-vermiculite the annealing of the microstructure started at 730°C. The onset temperatures of the formation of new crystalline phases were indicated by ETA as the increase of the radon release rate. The onset temperatures of the ordering of the vermiculite structure or sintering under presence of the glassy stage (for Na-vermiculite), respectively, were determined from the decrease of the radon release rate. The ETA results were confirmed by DTA, XRD and SEM.This revised version was published online in November 2005 with corrections to the Cover Date.  相似文献   

11.
Differential thermal analysis (DTA) of low-rank coals of high lignite to subbituminous rank from coal mines of Pakistan is reported. The studies carried out in dynamic oxygen atmosphere indicate that the exothermic reactions occur between 300 and 650°C and that the samples undergo stepwise oxidation of the organic matter rather than a continuous process as indicated by the pattern of shoulders from 250 to 350°C accompanying the main peak around 450°C. The effect of heating rate, particle size and volatile content was also studied in relation to oxidation. The results show that the increase in heating rate from 10 to 80 deg min−1 results in a marked shift in all the events in the DTA curve towards higher temperatures. As for the effect of particle size, the DTA records of 100–75, 150–100, 250–150 μm and greater than 250 μm fractions show that the magnitude and position of shoulder peaks are more sensitive to changes in particle sizes compared to the main peak. The curves recorded to study the effect of changing volatile content of samples between 30–40% indicate a complex pattern of shoulders accompanying the main peak. In general, the number of shoulder peaks increases with increasing volatile content of samples but their positions do not follow any trend. The DTA curves recorded in nitrogen contain ill-de-fined oxothermic effects over the 300–750°C temperature range. These curves consist of an endothermic peak around 150°C, two exothermic shoulders in the temperature region 300–400°C and a large broad exothermic whip between 500 and 700°C. The heating rates have similar effects as in oxygen while the particle size do not influence the results. It has been concluded that the organic matter in the coals studied here is extremely heterogeneous with different burning characteristics; as a result it is very difficult to quantify energy changes associated with poorly resolved exothermic events along the DTA curve. The effects also dominate in N2 atmosphere thus making identification of mineral matter difficult. The overall pattern of DTA events in oxygen can be correlated with the heating rate, particle size and volatile content of samples.  相似文献   

12.
The theoretical background for the use of radon diffusion as a probe of microstructure changes in solids is given. The high sensitivity of the emanation thermal analysis (ETA) in the study of solid state processes especially interactions taking place on surfaces and in the near surface layers is described. The increasing sensitivity of the method towards bulk processes with rising temperature is theoretically shown. The background considerations to be used in the mathematical modeling of temperature dependences of the radon release from solids on heating (i.e. simulated ETA curves) are presented. Various models for radon diffusion and various functions describing the annealing of structure irregularities, which served as diffusion paths for radon, were used in the modeling. It was shown, that ETA is able to characterize microstructure changes in the surface layers of the thickness from several nanometers to several micrometers.This revised version was published online in November 2005 with corrections to the Cover Date.  相似文献   

13.
Thermal behaviour of natural vermiculite (Santa Olalla, Huelva, Spain) was investigated by TG, DTA, emanation thermal analysis (ETA) and high temperature XRD on heating in the temperature range from 30 to 1100°C before and after vibratory mill grinding. Microstructure changes of natural and ground vermiculite samples were characterized by using ETA under in situ conditions of heating. By comparing the ETA and XRD results it was demonstrated that a decrease of radon release rate measured by ETA characterized the decrease in the interlayer spacing of the vermiculite samples that followed the dehydration. Dedicated to the memory of Professor Dr. Ferenc Paulik who passed away on October 12, 2005.  相似文献   

14.
Emanation thermal analysis (ETA), thermogravimetry, DTA and XRD were used in thermal characterization of natural vermiculite (Santa Olalla, Huelva, Spain) and of Na+- and - exchanged vermiculite samples during heating in air in the range 25-1100°C. A good agreement between the results of these methods was found. Changes in the radon release rate measured by ETA, which reflected the decrease and collapse of the interlayer space after the release of water as well as the formation of new crystalline phases were evaluated using a mathematical model. The model used for the evaluation was found suitable for the quantitative characterization of microstructure changes during in situ conditions of heating of vermiculite samples. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

15.
The effect of grinding on thermal behavior of pyrophyllite and talc as commonly used ceramic clay minerals was investigated by DTA, TG, emanation thermal analysis (ETA), B.E.T. surface area (s.a.) measurements, X-ray diffraction (XRD) and scanning electron microscopy (SEM). A vibratory mill was used in this study, grinding time was 5 min. It was found that the grinding caused an increase in surface area and a grain size reduction of the samples. From TG and DTA results it followed that grinding caused a decrease of the temperature at which the structure bound OH groups released. The formation of high temperature phases was enhanced with the ground samples. For the ground talc sample the crystallization of non-crystalline phase into orthorhombic enstatite was observed in the range of 800°C. For ground pyrophyllite a certain agglomeration of grains was observed in the range above 950°C. Moreover, for both clays the ETA characterized a closing up of subsurface irregularities caused by grinding as a decrease of the emanation rate in the range 250–400°C. The comparison of thermal analysis results with the results of other methods made it possible to better understand the effect of grinding on the ceramic clays.  相似文献   

16.
The thermal behavior of nicotinic acid under inert conditions was investigated by TG, FTIR and TG/DSC-FTIR. The results of TG/DSC-FTIR and FTIR indicated that the thermal behavior of nicotinic acid can be divided into four stages: a solid-solid phase transition (176–198°C), the process of sublimation (198–232°C), melting (232–263°C) and evaporation (263–325°C) when experiment was performed at the heating rate of 20 K min−1. The thermal analysis kinetic calculation of the second stage (sublimation) and the fourth stage (evaporation) were carried out respectively. Heating rates of 1, 1.5, 2 and 3 K min−1 were used to determine the sublimation kinetics. The apparent activation energy, pre-exponential factor and the most probable model function were obtained by using the master plots method. The results indicated that sublimation process can be described by one-dimensional phase boundary reaction, g(α)=α. And the ‘kinetic triplet’ of evaporation process was also given at higher heating rates of 15, 20, 25, 30 and 35 K min−1. Evaporation process can be described by model of nucleation and nucleus growing, .  相似文献   

17.
Seven polymorphic modifications of doxazosin mesylate, designed as forms A, D, E, F, G, H, I, and the amorphous state were studied by thermal methods (TG and DSC), temperature resolved X-ray powder diffractometry, hot stage and scanning electron microscopy and by FT-IR spectroscopy. Amorphous form was obtained either by fast evaporation of the solvent or by fast cooling of the melt in the DSC. Polymorphs A and F were found to be stable in the temperature range from room temperature to their melting points at 277.9 and 276.5°C, respectively. Form G, which melts at 270.8°C, was found to be hygroscopic. Polymorph D undergoes irreversible solid–liquid–solid phase transition at 235.5°C to polymorph I which melts at 274.9°C. Form H, which melts at 258.0°C, was found to be unstable at high temperatures. DSC examinations revealed that form H is irreversibly transformed to polymorph F during heating above the temperature of about 240°C. The amorphous state was found to be stable at room temperature but when heating above the glass transition (T g=144.1°C) it crystallizes at 221.6°C, what leads into a mixture of polymorphic forms. The new polymorphic form designed as E was identified in the mixture. The polymorph E is converted by heating to the more stable form F. The solubilities at 25°C for forms A, and F in methanol are 3.5 and 7.7 mg mL−1and in water they are 3.8 and 6.2 mg mL−1, respectively. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

18.
The phase transitions and thermal effects occurring during annealing in air of material with general formula CrOx (x≥2.4) have been investigated. The investigations were performed with TG, DTA, DSC, EGA, XRD and other spectral techniques. The formation of an amorphous phase with average composition Cr5O12 in the range 300-400°C has been observed. Further heating leads to partial loss of oxygen, simultaneous decay of Cr2O5 and CrO2 phases and formation of nonstoichiometric Cr2O3+x. The distinct loss of mass is observed in the range 415-428°C, connected with evolving oxygen and small amount of nitric oxides. Thermal effects accompanying the mass changes depend on the mass of the sample. When the mass decreases, the transition from exothermic to endothermic effects is observed. This phenomenon can be explained as the competition between two processes: reconstruction of the crystalline lattice (endothermic effect) and recombination of the evolved atomic oxygen (exothermic effect). This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

19.
Thermal behaviour of synthetic pyroaurite-like anionic clay with molar ratio Mg/Fe=2 was studied in the range of 60-1100°C during heating in air. TG/DTA coupled with evolved gas analysis, emanation thermal analysis (ETA), surface area measurements, XRD, IR and Mössbauer spectroscopy were used. Microstructure changes characterized by ETA were in a good agreement with the results of surface area measurements and other methods. After the thermal decomposition of the pyroaurite-like anionic clay, which took place mainly up to 400°C, a predominantly amorphous mixture of oxides is formed. A gradual crystallization of MgO (periclase) and Fe2O3 (maghemite) was observed at 400-700°C by XRD. The MgFe2O4 spinel and periclase were detected at 800-1100°C. The spinel formation was also confirmed by Mössbauer spectroscopy.  相似文献   

20.
High energy ball-milling methods were employed in the synthesis of anatase-doped hematite xTiO2(a) · (1−x)α-Fe2O3 (x = 0.1, 0.5, and 0.9) ceramic system. The thermal behavior of as obtained ceramic system was characterized by simultaneous DSC–TG. The pure anatase phase was found to be stable below 800 °C, but there is a 10.36% mass loss due to the water content. Two exothermic peaks on DSC curves of pure anatase indicate the different crystallization rates. The pure hematite partially decomposed upon heating under argon atmosphere. Ball-milling has a strong effect on the thermal behaviors of both anatase and hematite phases. For x = 0.1 and 0.5, there is gradual Ti substitution of Fe in hematite lattice, and the decomposition of hematite is enhanced due to the smaller particle size after ball-milling. The crystallization of hematite was suppressed as the enthalpy values decreased due to the anatase-hematite solid–solid interaction. For x = 0.9, most of the anatase phase converted to rutile phase after long milling time. The thermal behavior of xTiO2(a) · (1−x)α-Fe2O3 showed smaller enthalpy value of the hematite transformation to magnetite and anatase crystallization due to the small fraction of hematite phase in the system and hematite–anatase interaction, while the mass loss upon heating increased as a function of milling time due to more water content absorbed by the smaller particle size.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号