首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Suppose that $G$ is a finite group and $H$ is a subgroup of $G$ . $H$ is said to be an $s$ -quasinormally embedded in $G$ if for each prime $p$ dividing the order of $H$ , a Sylow $p$ -subgroup of $H$ is also a Sylow $p$ -subgroup of some $S$ -quasinormal subgroup of $G$ ; $H$ is said to be $c$ -normal in $G$ if $G$ has a normal subgroup $T$ such that $G=HT$ and $H\cap T\le H_{G}$ , where $H_{G}$ is the normal core of $H$ in $G$ . We fix in every non-cyclic Sylow subgroup $P$ of $G$ some subgroup $D$ satisfying $1<|D|<|P|$ and study the structure of $G$ under the assumption that every subgroup $H$ of $P$ with $|H|=|D|$ is either $s$ -quasinormally embedded or $c$ -normal in $G$ . Some recent results are generalized and unified.  相似文献   

2.
Let $G$ be a connected semisimple algebraic group with Lie algebra $\mathfrak{g }$ and $P$ a parabolic subgroup of $G$ with $\mathrm{Lie\, }P=\mathfrak{p }$ . The parabolic contraction $\mathfrak{q }$ of $\mathfrak{g }$ is the semi-direct product of $\mathfrak{p }$ and a $\mathfrak{p }$ -module $\mathfrak{g }/\mathfrak{p }$ regarded as an abelian ideal. We are interested in the polynomial invariants of the adjoint and coadjoint representations of $\mathfrak{q }$ . In the adjoint case, the algebra of invariants is easily described and it turns out to be a graded polynomial algebra. The coadjoint case is more complicated. Here we found a connection between symmetric invariants of $\mathfrak{q }$ and symmetric invariants of centralisers $\mathfrak{g }_e\subset \mathfrak{g }$ , where $e\in \mathfrak{g }$ is a Richardson element with polarisation $\mathfrak{p }$ . Using this connection and results of Panyushev et al. (J Algebra 313:343–391, 2007), we prove that the algebra of symmetric invariants of $\mathfrak{q }$ is free for all parabolic subalgebras in types $\mathbf A$ and $\mathbf C$ and some parabolics in type $\mathbf B$ . This technique also applies to the minimal parabolic subalgebras in all types. For $\mathfrak{p }=\mathfrak{b }$ , a Borel subalgebra of $\mathfrak{g }$ , one gets a contraction of $\mathfrak{g }$ recently introduced by Feigin (Selecta Math 18:513–537, 2012) and studied from invariant-theoretic point of view in our previous paper (Panyushev and Yakimova in Ann Inst Fourier 62(6):2053–2068, 2012).  相似文献   

3.
Let $G$ be a finite group. A subgroup $H$ of $G$ is called an $\mathcal{H }$ -subgroup of $G$ if $N_G(H)\cap H^g\le H$ for all $g\in G$ . A group $G$ is said to be an ${\mathcal{H }}_p$ -group if every cyclic subgroup of $G$ of prime order or order 4 is an $\mathcal{H }$ -subgroup of $G$ . In this paper, the structure of a finite group all of whose second maximal subgroups are ${\mathcal{H }}_p$ -subgroups has been characterized.  相似文献   

4.
Let $(B,\mathcal{M }_B)$ be a noetherian regular local ring of dimension $2$ with residue field $B/\mathcal{M }_B$ of characteristic $p>0$ . Assume that $B$ is endowed with an action of a finite cyclic group $H$ whose order is divisible by $p$ . Associated with a resolution of singularities of $\mathrm{Spec}B^H$ is a resolution graph $G$ and an intersection matrix $N$ . We prove in this article three structural properties of wild quotient singularities, which suggest that in general, one should expect when $H= \mathbb{Z }/p\mathbb{Z }$ that the graph $G$ is a tree, that the Smith group $\mathbb{Z }^n/\mathrm{Im}(N)$ is killed by $p$ , and that the fundamental cycle $Z$ has self-intersection $|Z^2|\le p$ . We undertake a combinatorial study of intersection matrices $N$ with a view towards the explicit determination of the invariants $\mathbb{Z }^n/\mathrm{Im}(N)$ and $Z$ . We also exhibit explicitly the resolution graphs of an infinite set of wild $\mathbb{Z }/2\mathbb{Z }$ -singularities, using some results on elliptic curves with potentially good ordinary reduction which could be of independent interest.  相似文献   

5.
Let $G$ be a unipotent algebraic group over an algebraically closed field $\mathtt{k }$ of characteristic $p>0$ and let $l\ne p$ be another prime. Let $e$ be a minimal idempotent in $\mathcal{D }_G(G)$ , the $\overline{\mathbb{Q }}_l$ -linear triangulated braided monoidal category of $G$ -equivariant (for the conjugation action) $\overline{\mathbb{Q }}_l$ -complexes on $G$ under convolution (with compact support) of complexes. Then, by a construction due to Boyarchenko and Drinfeld, we can associate to $G$ and $e$ a modular category $\mathcal{M }_{G,e}$ . In this paper, we prove that the modular categories that arise in this way from unipotent groups are precisely those in the class $\mathfrak{C }_p^{\pm }$ .  相似文献   

6.
For a group $G$ , denote by $\omega (G)$ the number of conjugacy classes of normalizers of subgroups of $G$ . Clearly, $\omega (G)=1$ if and only if $G$ is a Dedekind group. Hence if $G$ is a 2-group, then $G$ is nilpotent of class $\le 2$ and if $G$ is a $p$ -group, $p>2$ , then $G$ is abelian. We prove a generalization of this. Let $G$ be a finite $p$ -group with $\omega (G)\le p+1$ . If $p=2$ , then $G$ is of class $\le 3$ ; if $p>2$ , then $G$ is of class $\le 2$ .  相似文献   

7.
A subgroup $H$ of a group $G$ is called $\mathbb{P }$ -subnormal in $G$ whenever either $H=G$ or there is a chain of subgroups $H=H_0\subset H_1\subset \cdots \subset H_n=G$ such that $|H_i:H_{i-1}|$  is a prime for all $i$ . In this paper we study groups with $\mathbb{P }$ -subnormal 2-maximal subgroups, and groups with $\mathbb{P }$ -subnormal primary cyclic subgroups.  相似文献   

8.
We prove that a finitely generated pro- $p$ group acting on a pro- $p$ tree $T$ with procyclic edge stabilizers is the fundamental pro- $p$ group of a finite graph of pro- $p$ groups with vertex groups being stabilizers of certain vertices of $T$ and edge groups (when non-trivial) being stabilizers of certain edges of $T$ , in the following two situations: (1) the action is $n$ -acylindrical, i.e., any non-identity element fixes not more than $n$ edges; (2) the group $G$ is generated by its vertex stabilizers. This theorem is applied to obtain several results about pro- $p$ groups from the class $\mathcal L $ defined and studied in Kochloukova and Zalesskii (Math Z 267:109–128, 2011) as pro- $p$ analogues of limit groups. We prove that every pro- $p$ group $G$ from the class $\mathcal L $ is the fundamental pro- $p$ group of a finite graph of pro- $p$ groups with infinite procyclic or trivial edge groups and finitely generated vertex groups; moreover, all non-abelian vertex groups are from the class $\mathcal L $ of lower level than $G$ with respect to the natural hierarchy. This allows us to give an affirmative answer to questions 9.1 and 9.3 in Kochloukova and Zalesskii (Math Z 267:109–128, 2011). Namely, we prove that a group $G$ from the class $\mathcal L $ has Euler–Poincaré characteristic zero if and only if it is abelian, and if every abelian pro- $p$ subgroup of $G$ is procyclic and $G$ itself is not procyclic, then $\mathrm{def}(G)\ge 2$ . Moreover, we prove that $G$ satisfies the Greenberg–Stallings property and any finitely generated non-abelian subgroup of $G$ has finite index in its commensurator.  相似文献   

9.
10.
For a finite $p$ -group $G$ and a bounded below $G$ -spectrum $X$ of finite type mod  $p$ , the $G$ -equivariant Segal conjecture for $X$ asserts that the canonical map $X^G \rightarrow X^{hG}$ , from $G$ -fixed points to $G$ -homotopy fixed points, is a $p$ -adic equivalence. Let $C_{p^n}$ be the cyclic group of order  $p^n$ . We show that if the $C_p$ -equivariant Segal conjecture holds for a $C_{p^n}$ -spectrum $X$ , as well as for each of its geometric fixed point spectra $\varPhi ^{C_{p^e}}(X)$ for $0 < e < n$ , then the $C_{p^n}$ -equivariant Segal conjecture holds for  $X$ . Similar results also hold for weaker forms of the Segal conjecture, asking only that the canonical map induces an equivalence in sufficiently high degrees, on homotopy groups with suitable finite coefficients.  相似文献   

11.
We consider the problem $$\begin{aligned} -\Delta u=\varepsilon ^{2}e^{u}- \frac{1}{|\Omega |}\int _\Omega \varepsilon ^{2} e^{u}+ {4\pi N\over |\Omega |} - 4 \pi N\delta _p, \quad \text{ in} {\Omega }, \quad \int _\Omega u=0 \end{aligned}$$ in a flat two-torus $\Omega $ with periodic boundary conditions, where $\varepsilon >0,\,|\Omega |$ is the area of the $\Omega $ , $N>0$ and $\delta _p$ is a Dirac mass at $p\in \Omega $ . We prove that if $1\le m<N+1$ then there exists a family of solutions $\{u_\varepsilon \}_{\varepsilon }$ such that $\varepsilon ^{2}e^{u_\varepsilon }\rightharpoonup 8\pi \sum _{i=1}^m\delta _{q_i}$ as $\varepsilon \rightarrow 0$ in measure sense for some different points $q_{1}, \ldots , q_{m}$ . Furthermore, points $q_i$ , $i=1,\dots ,m$ are different from $p$ .  相似文献   

12.
If $G$ is a triangle-free graph, then two Gallai identities can be written as $\alpha (G)+\overline{\chi }(L(G))=|V(G)|=\alpha (L(G))+\overline{\chi }(G)$ , where $\alpha $ and $\overline{\chi }$ denote the stability number and the clique-partition number, and $L(G)$ is the line graph of  $G$ . We show that, surprisingly, both equalities can be preserved for any graph $G$ by deleting the edges of the line graph corresponding to simplicial pairs of adjacent arcs, according to any acyclic orientation of  $G$ . As a consequence, one obtains an operator $\Phi $ which associates to any graph parameter $\beta $ such that $\alpha (G) \le \beta (G) \le \overline{\chi }(G)$ for all graph $G$ , a graph parameter $\Phi _\beta $ such that $\alpha (G) \le \Phi _\beta (G) \le \overline{\chi }(G)$ for all graph $G$ . We prove that $\vartheta (G) \le \Phi _\vartheta (G)$ and that $\Phi _{\overline{\chi }_f}(G)\le \overline{\chi }_f(G)$ for all graph  $G$ , where $\vartheta $ is Lovász theta function and $\overline{\chi }_f$ is the fractional clique-partition number. Moreover, $\overline{\chi }_f(G) \le \Phi _\vartheta (G)$ for triangle-free $G$ . Comparing to the previous strengthenings $\Psi _\vartheta $ and $\vartheta ^{+ \triangle }$ of $\vartheta $ , numerical experiments show that $\Phi _\vartheta $ is a significant better lower bound for $\overline{\chi }$ than $\vartheta $ .  相似文献   

13.
In this paper we prove the existence of a nontrivial non-negative radial solution for the quasilinear elliptic problem $$\begin{aligned} \left\{ \begin{array}{l@{\quad }l} -\nabla \cdot \left[\phi ^{\prime }(|\nabla u|^2)\nabla u \right] +|u|^{\alpha -2}u =|u|^{s-2} u,&x\in \mathbb{R }^{N},\\ u(x) \rightarrow 0, \quad \text{ as} |x|\rightarrow \infty , \end{array} \right. \end{aligned}$$ where $N\ge 2, \phi (t)$ behaves like $t^{q/2}$ for small $t$ and $t^{p/2}$ for large $t, 1< p<q<N, 1<\alpha \le p^* q^{\prime }/p^{\prime }$ and $\max \{q,\alpha \}< s<p^*,$ being $p^*=\frac{pN}{N-p}$ and $p^{\prime }$ and $q^{\prime }$ the conjugate exponents, respectively, of $p$ and $q$ . Our aim is to approach the problem variationally by using the tools of critical points theory in an Orlicz-Sobolev space. A multiplicity result is also given.  相似文献   

14.
A group $G$ is said to be a minimax group if it has a finite series whose factors satisfy either the minimal or the maximal condition. Let $D(G)$ denotes the subgroup of $G$ generated by all the Chernikov divisible normal subgroups of $G$ . If $G$ is a soluble-by-finite minimax group and if $D(G)=1$ , then $G$ is said to be a reduced minimax group. Also $G$ is said to be an $ M_{r}C$ -group (respectively, $PC$ -group), if $G/C_{G} \left(x^{G}\right)$ is a reduced minimax (respectively, polycyclic-by-finite) group for all $x\in G$ . These are generalisations of the familiar property of being an $FC$ -group. Finally, if $\mathfrak X $ is a class of groups, then $G$ is said to be a minimal non- $\mathfrak X $ -group if it is not an $\mathfrak X $ -group but all of whose proper subgroups are $\mathfrak X $ -groups. Belyaev and Sesekin characterized minimal non- $FC$ -groups when they have a non-trivial finite or abelian factor group. Here we prove that if $G$ is a group that has a proper subgroup of finite index, then $G$ is a minimal non- $M_{r}C$ -group (respectively, non- $PC$ -group) if, and only if, $G$ is a minimal non- $FC$ -group.  相似文献   

15.
A group $G$ is called a $\mathcal{P }_1$ -group if it has a normal series of finite length whose factors have rank $1$ , while $G$ is an $\mathcal{H }_1$ -group if it has an ascending normal series of the same type. This paper investigates properties of $\mathcal{P }_1$ -groups and $\mathcal{H }_1$ -groups which correspond to known properties of nilpotent and supersoluble groups.  相似文献   

16.
Let $G$ be a locally finite group which contains a non-cyclic subgroup $V$ of order four such that $C_{G}\left( V\right) $ is finite and $C_{G}\left( \phi \right)$ has finite exponent for some $\phi \in V$ . We show that $[G,\phi ]^{\prime }$ has finite exponent. This enables us to deduce that $G$ has a normal series $1\le G_1\le G_2\le G_3\le G$ such that $G_1$ and $G/G_2$ have finite exponents while $G_2/G_1$ is abelian. Moreover $G_3$ is hyperabelian and has finite index in $G$ .  相似文献   

17.
We investigate the vanishing of the group $SK_1(\Lambda (G))$ for the Iwasawa algebra $\Lambda (G)$ of a pro- $p$ $p$ -adic Lie group $G$ (with $p \ne 2$ ). We reduce this vanishing to a linear algebra problem for Lie algebras over arbitrary rings, which we solve for Chevalley orders in split reductive Lie algebras.  相似文献   

18.
Let $G$ be a graph with the vertex set $V(G)$ and the edge set $E(G)$ . A function $f: E(G)\longrightarrow \{-1, 1\}$ is said to be a signed star dominating function of $G$ if $\sum _{e \in E_G(v)}f (e)\ge 1 $ , for every $v \in V(G)$ , where $E_G(v) = \{uv\in E(G)\,|\,u \in V (G)\}$ . The minimum values of $\sum _{e \in E_G(v)}f (e)$ , taken over all signed star dominating functions $f$ on $G$ , is called the signed star domination number of $G$ and denoted by $\gamma _{SS}(G)$ . In this paper we determine the signed star domination number of regular multigraphs.  相似文献   

19.
We prove that the adjoint of a continuous homogeneous polynomial $P$ between Banach spaces belongs to a given operator ideal $\mathcal I$ if and only if $P$ admits a factorization $P = u \circ Q$ where the adjoint of the linear operator $u$ belongs to $\mathcal I$ . Several consequences of this factorization are obtained, for example we characterize the polynomials whose adjoints are absolutely $p$ -summing.  相似文献   

20.
Let $\{\varphi _n(z)\}_{n\ge 0}$ be a sequence of inner functions satisfying that $\zeta _n(z):=\varphi _n(z)/\varphi _{n+1}(z)\in H^\infty (z)$ for every $n\ge 0$ and $\{\varphi _n(z)\}_{n\ge 0}$ has no nonconstant common inner divisors. Associated with it, we have a Rudin type invariant subspace $\mathcal{M }$ of $H^2(\mathbb{D }^2)$ . The ranks of $\mathcal{M }\ominus w\mathcal{M }$ for $\mathcal{F }_z$ and $\mathcal{F }^*_z$ respectively are determined, where $\mathcal{F }_z$ is the fringe operator on $\mathcal{M }\ominus w\mathcal{M }$ . Let $\mathcal{N }= H^2(\mathbb{D }^2)\ominus \mathcal{M }$ . It is also proved that the rank of $\mathcal{M }\ominus w\mathcal{M }$ for $\mathcal{F }^*_z$ equals to the rank of $\mathcal{N }$ for $T^*_z$ and $T^*_w$ .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号