首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper develops semistability and uniform semistability analysis results for switched linear systems. Semistability is the property whereby the solutions of a dynamical system converge to Lyapunov stable equilibrium points determined by the system’s initial conditions. Since solutions to switched systems are a function of the system’s initial conditions as well as the switching signals, uniformity here refers to the convergence rate of the multiple solutions as the switching signal evolves over a given switching set. The main results of the paper involve sufficient conditions for semistability and uniform semistability using multiple Lyapunov functions and sufficient regularity assumptions on the class of switching signals considered.  相似文献   

2.
This paper focuses on semistability and finite-time semistability for discontinuous dynamical systems. Semistability is the property whereby the solutions of a dynamical system converge to Lyapunov stable equilibrium points determined by the system initial conditions. In this paper, we extend the theory of semistability to discontinuous autonomous dynamical systems. In particular, Lyapunov-based tests for strong and weak semistability as well as finite-time semistability for autonomous differential inclusions are established. Using these results we then develop a framework for designing semistable and finite-time semistable protocols for dynamical networks with switching topologies. Specifically, we present distributed nonlinear static and dynamic output feedback controller architectures for multiagent network consensus and rendezvous with dynamically changing communication topologies.  相似文献   

3.
The stability results which comprise the Direct Method of Lyapunov involve the existence of auxiliary functions (Lyapunov functions) endowed with certain definiteness properties. Although the Direct Method is very general and powerful, it has some limitations: there are dynamical systems with known stability properties for which there do not exist Lyapunov functions which satisfy the hypotheses of a Lyapunov stability theorem.In the present paper we identify a scalar switched dynamical system whose equilibrium (at the origin) has known stability properties (e.g., uniform asymptotic stability) and we prove that there does not exist a Lyapunov function which satisfies any one of the Lyapunov stability theorems (e.g., the Lyapunov theorem for uniform asymptotic stability). Using this example as motivation, we establish stability results which eliminated some of the limitations of the Direct Method alluded to. These results involve time-averaged Lyapunov function derivatives (TALFD’s). We show that these results are amenable to the analysis of the same dynamical systems for which the Direct Method fails. Furthermore, and more importantly, we prove that the stability results involving TALFD’s are less conservative than the results which comprise the Direct Method (which henceforth, we refer to as the classical Lyapunov stability results).While we confine our presentation to continuous finite-dimensional dynamical systems, the results presented herein can readily be extended to arbitrary continuous dynamical systems defined on metric spaces. Furthermore, with appropriate modifications, stability results involving TALFD’s can be generalized to discontinuous dynamical systems (DDS).  相似文献   

4.
In this paper, we investigate the problem of stabilization for single-input planar discrete-time switched systems by establishing necessary and/or sufficient conditions for the existence of switched quadratic Lyapunov functions of the closed-loop system. The results given in terms of a series of matrix inequalities generalize those results in our recent paper [Y.G. Sun, L. Wang, G. Xie, Necessary and sufficient conditions for stabilization of discrete-time planar switched systems, Nonlinear Anal.: Theory and Methods 65 (2006) 1039–1049] and clearly describe the set of switched quadratic Lyapunov functions for the system.  相似文献   

5.
Vector Lyapunov theory has been developed to weaken the hypothesis of standard Lyapunov theory in order to enlarge the class of Lyapunov functions that can be used for analyzing system stability. In this paper, we provide generalizations to the recent extensions of vector Lyapunov theory for continuous-time systems to address stability and control design of impulsive dynamical systems via vector Lyapunov functions. Specifically, we provide a generalized comparison principle involving hybrid comparison dynamics that are dependent on the comparison system states as well as the nonlinear impulsive dynamical system states. Furthermore, we develop stability results for impulsive dynamical systems that involve vector Lyapunov functions and hybrid comparison inequalities. Based on these results, we show that partial stability for state-dependent impulsive dynamical systems can be addressed via vector Lyapunov functions. Furthermore, we extend the recently developed notion of control vector Lyapunov functions to impulsive dynamical systems. Using control vector Lyapunov functions, we construct a universal hybrid decentralized feedback stabilizer for a decentralized affine in the control nonlinear impulsive dynamical system that possesses guaranteed gain and sector margins in each decentralized input channel. These results are then used to develop hybrid decentralized controllers for large-scale impulsive dynamical systems with robustness guarantees against full modeling and input uncertainty.  相似文献   

6.
In this paper, the problem of stability of switched homogeneous systems is addressed. First of all, if there is a quadratic Lyapunov function such that nonlinear homogeneous systems are asymptotically stable, a matrix Lyapunov-like equation is obtained for a stable nonlinear homogeneous system using semi-tensor product of matrices, and Lyapunov equation of linear system is just its particular case. Following the previous results, a sufficient condition is obtained for stability of switched nonlinear homogeneous systems, and a switching law is designed by partition of state space. In particular, a constructive approach is provided to avoid chattering phenomena which is caused by the switching rule. Then for planar switched homogeneous systems, an LMI approach to stability of planar switched homogeneous systems is presented. Similar to the condition for linear systems, the LMI-type condition is easily verifiable. An example is given to illustrate that candidate common Lyapunov function is a key point for design of switching law.  相似文献   

7.
Asymptotic stability of time-varying switched systems is investigated in this paper. The less conservative sufficient criteria for asymptotic stability of time-varying discrete-time switched systems are proposed via common indefinite difference Lyapunov functions and multiple indefinite difference Lyapunov functions introduced in this note, respectively. Common indefinite difference Lyapunov functions can be used to analyze stability of a switched system with asymptotic stable subsystems and arbitrary switching signal. Multiple indefinite difference Lyapunov functions can be used to investigate stability of a switched system with unstable subsystems and a given switching signal. The difference of the proposed Lyapunov function may be positive at some instants for an asymptotically stable subsystem. We compare these main results and illustrate the effectiveness of the obtained theorems by three numerical examples.  相似文献   

8.
It has recently been shown that almost global stability of nonlinear switched systems can be characterized using multiple Lyapunov densities. This has been accomplished for switched systems subject to a minimum dwell time or an average dwell time constraint. In this paper, as an extension of the aforementioned results, we provide a sufficient condition on mode-dependent and edge-dependent average dwell time to ensure almost global stability of a nonlinear switched system. The relations between average dwell time, mode-dependent, and edge-dependent average dwell time have been discussed. The obtained results for nonlinear switched systems imply the existing results for linear switched systems.  相似文献   

9.
In this paper, we study the asymptotic stability of continuous-time positive switched linear systems for the case when each subsystem is only stable. By using the so-called “joint linear copositive Lyapunov function” (JLCLF) generalizing the common linear copositive Lyapunov function, we show that the system remains asymptotically stable under appropriate switching if it has a JLCLF. Then, the main result is extended to positive switched linear systems with time delay.  相似文献   

10.
This paper considers the problem of fixed-time stability (FTS) for switched nonlinear time-varying (NTV) systems. Firstly, three sufficient conditions are proposed to verify the FTS of NTV systems by using the improved Lyapunov function, which has a tighter upper bound of time derivative. Then, two FTS conditions are given for the switched NTV system by extending the obtained results, moreover, a switching strategy is also provided by using the minimum dwell time method. Finally, the obtained results are extended to study the FTS of impulsive NTV systems. Comparing with the existing results, the obtained conditions have two improvements: (1) provides a more accurate estimate for the upper bound of settling time of NTV systems, and (2) allows the Lyapunov function to increase at the switching instant of switched NTV (or impulsive NTV) systems. Two numerical examples are given to illustrate the theoretical results.  相似文献   

11.
In this paper, we study the stabilization of general nonlinear switched systems by using control Lyapunov functions. The concept of control Lyapunov function for nonlinear control systems is generalized to switched control systems. The first part of our contribution provides a necessary and sufficient condition of stabilization. The main idea is to use a common control Lyapunov function; this is achieved with the converse Lyapunov theorem dedicated to switched systems. In the second part, an explicit construction of a common control Lyapunov function is addressed with respect to a finite family of switched systems. The approach uses a family of control Lyapunov functions attached to the subsystems.  相似文献   

12.
The stability of discrete-time systems with time varying delay in the state can be analyzed by using a discrete-time extension of the classical Lyapunov–Krasovskii approach. In the networked control systems domain a similar delay stability problem is treated using a switched system transformation approach. The paper aims to establish a relation between the switched system transformation approach and the classical Lyapunov–Krasovskii method. It is shown that using the switched systems transformation is equivalent to using a general delay dependent Lyapunov–Krasovskii functionals. This functional represents the most general form that can be obtained using sums of quadratic terms. Necessary and sufficient LMI conditions for the existence of such functionals are presented.  相似文献   

13.
The problem of robust exponential stability for a class of switched nonlinear dynamical systems with uncertainties and unbounded delay is addressed. On the assumption that the interconnected functions of the studied systems satisfy the Lipschitz condition, by resorting to vector Lyapunov approach and M-matrix theory, the sufficient conditions to ensure the robust exponential stability of the switched interconnected systems under arbitrary switching are obtained. The proposed method, which neither require the individual subsystems to share a Common Lyapunov Function (CLF), nor need to involve the values of individual Lyapunov functions at each switching time, provide a new way of thinking to study the stability of arbitrary switching. In addition, the proposed criteria are explicit, and it is convenient for practical applications. Finally, two numerical examples are given to illustrate the correctness and effectiveness of the proposed theories.  相似文献   

14.
Finite-time stability involves dynamical systems whose trajectories converge to a Lyapunov stable equilibrium state in finite time. For continuous-time dynamical systems finite-time convergence implies nonuniqueness of system solutions in reverse time, and hence, such systems possess non-Lipschitzian dynamics. For impulsive dynamical systems, however, it may be possible to reset the system states to an equilibrium state achieving finite-time convergence without requiring non-Lipschitzian system dynamics. In this paper, we develop sufficient conditions for finite-time stability of impulsive dynamical systems using both scalar and vector Lyapunov functions. Furthermore, we design hybrid finite-time stabilizing controllers for impulsive dynamical systems that are robust against full modelling uncertainty. Finally, we present a numerical example for finite-time stabilization of large-scale impulsive dynamical systems.  相似文献   

15.
The notion of Lyapunov function plays a key role in the design and verification of dynamical systems, as well as hybrid and cyber-physical systems. In this paper, to analyze the asymptotic stability of a dynamical system, we generalize standard Lyapunov functions to relaxed Lyapunov functions (RLFs), by considering higher order Lie derivatives. Furthermore, we present a method for automatically discovering polynomial RLFs for polynomial dynamical systems (PDSs). Our method is relatively complete in the sense that it is able to discover all polynomial RLFs with a given predefined template for any PDS. Therefore it can also generate all polynomial RLFs for the PDS by enumerating all polynomial templates.  相似文献   

16.
This work proposes the command tracking problem for uncertain Euler–Lagrange (EL) systems with multiple partial loss of effectiveness (PLOE) actuator faults. Compared to existing fault-tolerant controllers for EL systems, the proposed adaptive controller accounts for parametric uncertainties in the system and multiple time-varying actuator fault parameters. The proposed method can also handle an infinite number of fault cases. The closed-loop fault-tolerant system is treated as a switched dynamical system, and a switched system stability is established using multiple Lyapunov functions. It is shown that all signals are bounded in each sub-interval and at the switching instances, and asymptotic tracking can be obtained only for a finite number of fault occurrences, whereas tracking error is bounded for the infinite case. Finally, a simulation example on a robotic manipulator is presented to show the effectiveness of the proposed method.  相似文献   

17.
In this paper, we deal with stability analysis of a class of nonlinear switched discrete-time systems. Systems of the class appear in numerical simulation of continuous-time switched systems. Some linear matrix inequality type stability conditions, based on the common Lyapunov function approach, are obtained. It is shown that under these conditions the system remains stable for any switching law. The obtained results are applied to the analysis of dynamics of a discrete-time switched population model. Finally, a continuous state feedback control is proposed that guarantees the uniform ultimate boundedness of switched systems with uncertain nonlinearity and parameters.  相似文献   

18.
19.
In this paper, smooth output feedback controllers are presented to stabilize a class of planar switched nonlinear systems with asymmetric output constraints (AOCs). A new common barrier Lyapunov function (CBLF) is developed to prevent the switched system from violating AOCs. Combining the adding a power integrator technique (APIT) and the CBLF, state feedback controllers are designed. Then, reduced-order nonlinear observers are constructed and smooth output feedback controllers are proposed to globally stabilize planar switched nonlinear systems under arbitrary switchings. Meanwhile, the system output meets the prescribed AOCs during operation. The method proposed in this paper is a unified tool because it works not only for switched nonlinear systems with asymmetric or symmetric output constrains but also for those without output constraints. Simulations are presented to verify the proposed method.  相似文献   

20.
This paper focuses on the design of both periodic time- and event-triggered control laws of switched affine systems using a hybrid dynamical system approach. The novelties of this paper rely on the hybrid dynamical representation of this class of systems and on a free-matrix min-projection control, which relaxes the structure of the usual Lyapunov matrix-based min-projection control. This contribution also presents an extension of the usual periodic time-triggered implementation to the event-triggered one, where the control input updates are permitted only when a particular event is detected. Together with the definition of an appropriate optimization problem, a stabilization result is formulated to ensure the uniform global asymptotic stability of an attractor for both types of controllers, which is a neighborhood of the desired operating point. Finally, the proposed method is evaluated through a numerical example.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号