首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
Low WK  Dang Y  Bhat S  Romo D  Liu JO 《Chemistry & biology》2007,14(6):715-727
Central to cap-dependent eukaryotic translation initiation is the eIF4F complex, which is composed of the three eukaryotic initiation factors eIF4E, eIF4G, and eIF4A. eIF4A is an RNA-dependent ATPase and an ATP-dependent helicase that unwinds local secondary structure in mRNA to allow binding of the 43S ribosomal complex. The marine natural product pateamine A (PatA) has been demonstrated to inhibit cap-dependent initiation by targeting eIF4A and disrupting its protein-protein interactions while increasing its enzymatic activities. Here we demonstrate that the increased activity is caused by the induction of global conformational changes within eIF4A. Furthermore, binding of PatA is dependent on substrate (RNA and ATP) binding, and the increased activity upon PatA binding is caused by relief of a negative regulatory function of the eIF4A unique domain linker.  相似文献   

3.
The methodology developed in the research presented herein makes use of chaotropic solvents to gently dissociate subunits from an intact macromolecular complex and subsequently allows for the measurement of collision cross section (CCS) for both the recombinant (R-eIF3k) and solvent dissociated form of the subunit (S-eIF3k). In this particular case, the k subunit from the eukaryotic initiation factor 3 (eIF3) was investigated in detail. Experimental and theoretical CCS values show both the recombinant and solvent disrupted forms of the protein to be essentially the same. The ultimate goal of the project is to structurally characterize all the binding partners of eIF3, determine which subunits interact directly, and investigate how subunits may change conformation when they form complexes with other proteins. Research presented herein is the first report showing retention of solution conformation of a protein as evidenced by CCS measurements of both recombinant and solvent disrupted versions of the same protein.  相似文献   

4.
Eukaryotic initiation factor 4A (eIF4A) is a member of the DEAD-box family of putative RNA helicases whose members are involved in many aspects of RNA metabolism. eIF4A is thought to facilitate binding of 43S preinitiation complexes to mRNAs by unwinding secondary structures present in the 5' untranslated region. Pateamine A, a small-molecule inhibitor of translation initiation, acts in an unusual manner by stimulating eIF4A activity. Herein, we report the elucidation of pateamine's mode of action. We demonstrate that Pateamine A is a chemical inducer of dimerization that forces an engagement between eIF4A and RNA and prevents eIF4A from participating in the ribosome-recruitment step of translation initiation.  相似文献   

5.
The m7G cap is a unique nucleotide structure at the 5′-end of all eukaryotic mRNAs. The cap specifically interacts with numerous cellular proteins and participates in biological processes that are essential for cell growth and function. To provide small molecular probes to study important cap-recognizing proteins, we synthesized m7G nucleotides labeled with fluorescent tags via the terminal phosph(on)ate group and studied how their emission properties changed upon protein binding or enzymatic cleavage. Only the pyrene-labeled compounds behaved as sensitive turn-on probes. A pyrene-labeled m7GTP analogue showed up to eightfold enhanced fluorescence emission upon binding to eukaryotic translation initiation factor 4E (eIF4E) and over 30-fold enhancement upon cleavage by decapping scavenger (DcpS) enzyme. These observations served as the basis for developing binding- and hydrolytic-activity assays. The assay utility was validated with previously characterized libraries of eIF4E ligands and DcpS inhibitors. The DcpS assay was also applied to study hydrolytic activity and inhibition of endogenous enzyme in cytoplasmic extracts from HeLa and HEK cells.  相似文献   

6.
Pateamine A inhibits translation by preventing proper translational initiation complex formation. In the December issue of Chemistry & Biology, Bordeleau et al. demonstrated that the effects of Patemine A on translation are mediated through the interaction between the RNA helicase eIF4A and mRNA .  相似文献   

7.
8.
The binding of five analogues of the 5'-end mRNA cap, differing in their electrostatic and hydrodynamic properties, to the eukaryotic initiation factor eIF4E was simulated by means of Brownian dynamics methods. Electrostatic and hydrodynamic models of eIF4E protein and the ligands were prepared using established molecular electrostatics and hydrodynamics simulation methods for predicting ionization states of titratable groups, adequate for given experimental conditions, and for computing their translational and rotational diffusion tensors, respectively. The diffusional encounter rate constants obtained from simulations are compared with bimolecular association rate constants resulting from stopped-flow spectrofluorimeter measurements. A very good agreement between simulations and experiments was achieved, which indicates that the kinetics of binding 5'-mRNA caps can be satisfactory explained by referring to the Brownian motion of the particles with the electrostatic steering of the ligands toward the eIF4E binding site and electrostatic desolvation contributions upon complex formation.  相似文献   

9.
Protein synthesis is a fundamental biological mechanism bringing the DNA-encoded genetic information into life by its translation into molecular effectors - proteins. The initiation phase of translation is one of the key points of gene regulation in eukaryotes, playing a role in processes from neuronal function to development. Indeed, the importance of the study of protein synthesis is increasing with the growing list of genetic diseases caused by mutations that affect mRNA translation. To grasp how this regulation is achieved or altered in the latter case, we must first understand the molecular details of all underlying processes of the translational cycle with the main focus put on its initiation. In this review I discuss recent advances in our comprehension of the molecular basis of particular initiation reactions set into the context of how and where individual eIFs bind to the small ribosomal subunit in the pre-initiation complex. I also summarize our current knowledge on how eukaryotic initiation factor eIF3 controls gene expression in the gene-specific manner via reinitiation.  相似文献   

10.
The heme-regulated eukaryotic initiation factor 2alpha (eIF2alpha) kinase (HRI), which is found primarily in reticulocytes, contains an N-terminal heme-binding domain (NT-HBD). Binding of NO to the heme iron of the NT-HBD of HRI activates its eIF2alpha kinase activity, thus inhibiting the initiation of translation in reticulocyte lysate. The EPR spectrum of the NO-bound NT-HBD showed several derivative-shaped lines around g = 2.00, which is one of the well-documented signature patterns of a six-coordinate NO complex with histidine as the axial ligand. This is in sharp contrast to that of another prototypical NO-sensor protein, soluble guanylate cyclase (sGC), in which the NO binding to the heme iron disrupts the iron-histidyl bond forming a five-coordinate NO. The NO-mediated activation of HRI is, therefore, not triggered by the cleavage of the iron-histidyl bond. As evidenced by the resonance Raman spectra, two inactive forms of HRI, the ferrous ligand-unbound and the CO-bound states of the NT-HBD, contain a six-coordinate complex as found for the NO complex, indicating that the replacement of the sixth ligand of the heme iron is not sufficient to trigger the activation of HRI. Because the configuration of liganded NO is different from that of liganded CO, we propose that specific interactions between liganded NO and surrounding amino acid residues, which would not be formed in the CO complex, are responsible for the NO-induced activation of HRI.  相似文献   

11.
Targeting cap-dependent translation initiation is one of the experimental approaches that could lead to the development of novel anti-cancer therapies. Synthetic dinucleoside 5′,5′-triphosphates cap analogs are potent antagonists of eukaryotic translation initiation factor 4E (eIF4E) in vitro and could counteract elevated levels of eIF4E in cancer cells; however, transformation of these compounds into therapeutic agents remains challenging – they do not easily penetrate into cells and are susceptible to enzymatic cleavage. Here, we tested the potential of several small molecule ligands – folic acid, biotin, glucose, and cholesterol – to deliver both hydrolyzable and cleavage-resistant cap analogs into cells. A broad structure–activity relationship (SAR) study using model fluorescent probes and cap–ligand conjugates showed that cholesterol greatly facilitates uptake of cap analogs without disturbing the interactions with eIF4E. The most potent cholesterol conjugate identified showed apoptosis-mediated cytotoxicity towards cancer cells.

Ligand assisted cellular delivery of negatively charged dinucleotides, which are potential antagonists of the protooncogenic protein eIF4E.  相似文献   

12.
Activity-dependent dendritic translation in CNS neurons is important for the synapse-specific provision of proteins that may be necessary for strengthening of synaptic connections. A major rate-limiting factor during protein synthesis is the availability of eukaryotic translation initiation factor 4E (eIF4E), an mRNA 5''-cap-binding protein. In this study we show by fluorescence in situ hybridization (FISH) that the mRNA for eIF4E is present in the dendrites of cultured rat hippocampal neurons. Under basal culture conditions, 58.7 ± 11.6% of the eIF4E mRNA clusters localize with or immediately adjacent to PSD-95 clusters. Neuronal activation with KCl (60 mM, 10 min) very significantly increases the number of eIF4E mRNA clusters in dendrites by 50.1 and 74.5% at 2 and 6 h after treatment, respectively. In addition, the proportion of eIF4E mRNA clusters that localize with PSD-95 increases to 74.4 ± 7.7% and 77.8 ± 7.6% of the eIF4E clusters at 2 and 6 h after KCl treatment, respectively. Our results demonstrate the presence of eIF4E mRNA in dendrites and an activity-dependent increase of these clusters at synaptic sites. This provides a potential mechanism by which protein translation at synapses may be enhanced in response to synaptic stimulation.  相似文献   

13.
Deoxyhypusine is a modified lysine and formed posttranslationally to be the eukaryotic initiation factor eIF5A by deoxyhypusine synthase, employing spermidine as butylamine donor. Subsequent hydroxylation of this deoxyhypusine-containing intermediate completes the maturation of eIF5A. The previous report showed that deoxyhypusine synthase was phosphorylated by PKC in vivo and the association of deoxyhypusine synthase with PKC in CHO cells was PMA-, and Ca(2+)/phospholipid-dependent. We have extended study on the phosphorylation of deoxyhypusine synthase by protein kinase CK2 in order to define its role on the regulation of eIF5A in the cell. The results showed that deoxyhypusine synthase was phosphorylated by CK2 in vivo as well as in vitro. Endogenous CK2 in HeLa cells and the cell lysate was able to phosphorylate deoxyhypusine synthase and this modification is enhanced or decreased by the addition of CK2 effectors such as polylysine, heparin, and poly(Glu, Tyr) 4:1. Phosphoamino acid analysis of this enzyme revealed that deoxyhypusine synthase is mainly phosphorylated on threonine residue and less intensely on serine. These results suggest that phosphorylation of deoxyhypusine synthase is CK2-dependent cellular event as well as PKC-mediated effect. However, there were no observable changes in enzyme activity between the phosphorylated and unphosphorylated forms of deoxyhypusine synthase. Taken together, besides its established function in hypusine modification involving eIF5A substrate, deoxyhypusine synthase and its phosphorylation modification may have other independent cellular functions because of versatile roles of deoxyhypusine synthase.  相似文献   

14.
R F Duncan 《Electrophoresis》1990,11(3):219-227
Infection of tissue culture cells with certain viruses results in the shutoff of host cell protein synthesis. We have examined virally infected cell lysates using two-dimensional gel electrophoresis and immunoblotting to ascertain whether initiation factor protein modifications are correlated with translational repression. Moderate increases in eukaryotic initiation factor (eIF)-2 alpha phosphorylation are detected in reovirus- and adenovirus-infected cells, as reported previously (Samuel et al., 1984; O'Malley et al., 1989). Neither vesicular stomatitis virus, vaccinia virus, frog virus III, rhinovirus, nor encephalomyocarditis virus caused significantly increased 2 alpha phosphorylation. There were no reproducible, significant changes in eIF-4A, eIF-4B, or eIF-2 beta in cells infected by any of these viruses. The cleavage of eIF-4F subunit p220, such as has been previously demonstrated to occur in poliovirus (Etchison et al., 1982) and rhinovirus (Etchison and Fout, 1985), was not detected in any of the other virus infections analyzed.  相似文献   

15.
The mitochondrial F(1)F(o) ATP synthase complex has a key role in cellular energy metabolism. The general architecture of the enzyme is conserved among species and consists of a globular catalytic moiety F(1), protruding out of the inner side of the membrane, a membrane integral proton translocating moiety F(o), and a stalk connecting F(1) to F(o). The X-ray crystallographic analysis of the structure of the bovine mitochondrial F(1) ATPase has provided a structural basis for the binding-change rotary mechanism of the catalytic process in F(1), in which the gamma subunit rotates in the central cavity of the F(1) alpha3/beta3 hexamer. Rotation of gamma and eta subunits in the E. coli enzyme and of, gamma and delta subunits in the mitochondrial enzyme, is driven, during ATP synthesis, by proton motive rotation of an oligomer of c subunits (10-12 copies) within the F(o) base piece. Average analysis of electron microscopy images and cross-linking results have revealed that, in addition to a central stalk, contributed by gamma and delta/eta subunits, there is a second lateral one connecting the peripheries of F(o) and F(1). To gain deeper insight into the mechanism of coupling between proton translocation and catalytic activity (ATP synthesis and hydrolysis), studies have been undertaken on the role of F(1) and F(o) subunits which contribute to the structural and functional connection between the catalytic sector F(1) and the proton translocating moiety F(o). These studies, which employed limited proteolysis, chemical cross-linking and functional analysis of the native and reconstituted F(1)F(o) complex, as well as isolated F(1), have shown that the N-terminus of alpha subunits, located at the top of the F(1) hexamer is essential for energy coupling in the F(1)F(o) complex. The alpha N-terminus domain appears to be connected to F(o) by OSCP (F(o) subunit conferring sensitivity of the complex to oligomycin). In turn, OSCP contacts F(o)I-PVP(b) and d subunits, with which it constitutes a structure surrounding the central gamma and delta rotary shaft. Cross-linking of F(o)I-PVP(b) and gamma subunits causes a dramatic enhancement of downhill proton translocation decoupled from ATP synthesis but is without effect on ATP driven uphill proton transport. This would indicate the existence of different rate-limiting steps in the two directions of proton translocation through F(o). In mitochondria, futile ATP hydrolysis by the F(1)F(o) complex is inhibited by the ATPase inhibitor protein (IF(1)), which reversibly binds at one side of the F(1)F(o) connection. The trans-membrane deltapH component of the respiratory deltap displaces IF(1) from the complex; in particular the matrix pH is the critical factor for IF(1)association and its related inhibitory activity. The 42L-58K segment of the IF(1) has been shown to be the most active segment of the protein; it interacts with the surface of one alpha/beta pairs of F(1), thus inhibiting, with the same pH dependence as the natural IF(1), the conformational interconversions of the catalytic sites involved in ATP hydrolysis. IF(1) has a relevant physiopathological role for the conservation of the cellular ATP pool in ischemic tissues. Under these conditions IF(1), which appears to be over expressed, prevents dissipation of the glycolytic ATP.  相似文献   

16.
We have raised monoclonal antibodies capable of immunocapturing all five complexes involved in oxidative phosphorylation for evaluating their post-translational modifications. Complex I (NADH dehydrogenase), complex II (succinate dehydrogenase), complex III (cytochrome c reductase), complex IV (cytochrome c oxidase), and complex V (F1F0 ATP synthase) from bovine heart mitochondria were obtained in good yield from small amounts of tissue in more than 90% purity in one step. The composition and purity of the complexes was evaluated by Western blotting using monoclonal antibodies against individual subunits of the five complexes. In this first study, the phosphorylation state of the proteins without inducing phosphorylation or dephosphorylation was identified by using the novel Pro-Q Diamond phosphoprotein gel stain. The major phosphorylated components were the same as described before in sucrose gradient enriched complexes. In addition a few additional potential phosphoproteins were observed. Since the described monoclonal antibodies show cross reactivity to human proteins, this procedure will be a fast and efficient way of studying post-translational modifications in control and patient samples using only small amounts of tissue.  相似文献   

17.
The structural and thermodynamic behavior of the complex formation of eIF4E with either or both mRNA cap analogue (m7GTP, m7GpppA, or m7GpppG) and 4EBP1 has been investigated by spectroscopic measurements. Although the circular dichroism (CD) spectrum of eIF4E was little affected by the association with any cap analogue, the association constant of eIF4E with m7GpppA/G, estimated from the fluorescence quenching, was about 10 times larger than that with m7GTP. The van't Hoff analyses showed that the m7GpppA/G binding is enthalpy-driven with a large negative deltaH(o), and this is in contrast with the entropy-driven binding of m7GTP, where the positive deltaS(o) is large enough to overcome an increase of deltaH(o). This different behavior obviously originates in the interaction of the second nucleotide in m7GpppA with eIF4E, suggesting the importance of the nucleotide sequence linked to the m7Gppp terminal moiety, in addition to the specific interaction with the m7G base, for the recognition of mRNA cap structure by eIF4E. On the other hand, the CD spectra indicated that the binding of 4EBP1, an endogenous eIF4E-regulatory protein without having any defined secondary structure, shifted the m7GTP- or m7GpppA/G-bound eIF4E to an irregular structure, although such a structural change was not observed for eIF4E alone. The association constant of 4EBP1 with m7GTP- or m7GpppA/G-bound eIF4E was by two orders of magnitude larger than that with eIF4E alone. These results suggest the close interrelation in the supramolecular formation of 4EBP-eIF4E-mRNA cap structure.  相似文献   

18.
Functionalization of RNA at the 5′‐terminus is important for analytical and therapeutic purposes. Currently, these RNAs are synthesized de novo starting with a chemically functionalized 5′‐nucleotide, which is incorporated into RNA using chemical synthesis or biochemical techniques. Methods for direct chemical modification of native RNA would provide an attractive alternative but are currently underexplored. Herein, we report that diazo compounds can be used to selectively alkylate the 5′‐phosphate of ribo(oligo)nucleotides to give RNA labelled through a native phosphate ester bond. We applied this method to functionalize oligonucleotides with biotin and an orthosteric inhibitor of the eukaryotic initiation factor 4E (eIF4E), an enzyme involved in mRNA recognition. The modified RNA binds to eIF4E, demonstrating the utility of this labelling technique to modulate biological activity of RNA. This method complements existing techniques and may be used to chemically introduce a broad range of functional handles at the 5′‐end of RNA.  相似文献   

19.
The reaction of 1,1,1,5,5,5-hexafluoroacetylacetone (Hhfac) with Ag2O in the presence of L=THF, toluene, and Me3SiCH=CH2 was studied to obtain [Ag(hfac)L]x complexes for use as chemical vapor deposition precursors. The structures and volatilities of these three complexes were compared to those of the previously synthesized Ag(hfac)(Me3SiC triple bond CSiMe3), 1, which was also crystallographically characterized for comparison. The reaction of Ag2O with Hhfac in THF forms the polymeric complex [Ag4(hfac)4(THF)2]infinity, 2, which has tetrametallic subunits with hfac ligands that bridge via oxygen and carbon. Both 4- and 5-coordinate silver metal centers are found in 2. Ag2O reacts with Hhfac in toluene to form a complex with a similar tetrametallic unit [Ag4(hfac)4(toluene)2]infinity, 3. In this case, the tetrametallic subunits are assembled via bridging toluene molecules, and each silver is 6-coordinate. In the presence of excess vinyltrimethylsilane (vtms), Ag2O and Hhfac form [Ag3(hfac)3(vtms)]infinity, 4, which contains trimetallic subunits assembled via oxygen atoms of bridging hfac ligands and 5- and 6-coordinate silver.  相似文献   

20.
The electronic states of molecules made of electropositive and electronegative components result from the interference between the covalent configurations and the ionic configurations. This work shows complex aspects of these ionic-covalent couplings in small molecules such as Li2H, Li2F, and Li4F. The extension of this type of analysis to the adsorption of the electrophilic molecules on the metal clusters or on the metal surfaces is supposed to lead to a radically new interpretation of the observed physical and chemical properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号